Open Source Development
With
CVS

Karl Fogel <kfogel@red-bean.com>

Copyright (©) 1999, 2000 Karl Fogel <kfogel@red-bean.com>

This document is free software; you can redistribute and /or modify it under the terms of the
GNU General Public License as published by the Free Software Foundation; either version
2, or (at your option) any later version.

This document is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.

This manual describes how to use and administer CVS (Concurrent Versions System).
It is part of a larger work entitled Open Source Development With CVS; please see the
introduction for details.

This is version 1.21 of this manual.

Open Source Development With CVS

Short Contents

Introduction o « o v oo v o v oo s eesooesooesssoosssoossss 3
AnOverview of CVS o i v i st ittt i i i snnnsnssssassssas 5
Repository Administration « « o o o o o e v v v vvooosooosocoees 63
Advanced CVS .o ittt i it et vvnneessooessssconnesns 95
Tips And Troubleshootingovveev e, 137
CVSReference o v oo veeeeeeeseoosssososssooossoossss 151
Third-Party Tools « v v v v e v eeeneeeeeeeieeennenannnns 197
06 1 211
Appendix A GNU General Public License « « e e v e e 000 v v vss 213

Appendix B GNU Free Documentation License «.......... 221

i Open Source Development With CVS

Table of Contents

INtroducCtionc.c.i it iir ittt eseesenanans 3

AnOverview of CVS ittt iiiiiiiiiennneeas D

Basic Concepts oou e 5
A Day With CVS ... 8
Conventions Used In This Tour 9
Invoking CVS. ... 9
Accessing A Repository. ...t 10
Starting A New Project, 12
Checking Out A Working Copy 14
Version Versus Revision 16
Making A Change...........oooiiiiiiiiiiiiiia... 16
Finding Out What You (And Others) Did — update And
diff ..o 17
CVS And Implied Arguments 21
Committing ... 24
Revision Numbers...........o .. 24
Detecting And Resolving Conflicts..................... 28
Finding Out Who Did What (Browsing Log Messages) .. 30
Examining And Reverting Changes.................... 32
The Slow Method Of Reverting 34
The Fast Method Of Reverting........................ 36
Other Useful CVS Commands...............cooooiiiiiaa. ... 37
Adding Files.o 37
Adding Directories ... 37
CVS And Binary Files.............. 38
Removing Files 39
Removing Directories............ 39
Renaming Files And Directories....................... 40
Avoiding Option Fatigue.................. 41
Getting Snapshots (Dates And Tagging) 41
Acceptable Date Formats............................. 44
Marking A Moment In Time (Tags) 45
Branches......o i 50
Branching Basics................. .o L 50
Merging Changes From Branch To Trunk 56
Multiple Mergesoouuuiiiiiii i, 58

Creating A Tag Or Branch Without A Working Copy ... 60

Repository Administration 63

Getting And Installing CVS 63
Getting And Building CVS Under Unix................ 63
Getting And Installing CVS Under Windows 65
Getting And Installing CVS On A Macintosh 66
Limitations Of The Windows And Macintosh Versions .. 67

Anatomy Of A CVS Distribution............................. 67
Informational Files........ 67
Subdirectories 68
The Cederqvist Manual. 69
Other Sources Of Information......................... 70

Starting A Repository ... 71

The Password-Authenticating Server 72

Anonymous ACCeSSt 75

Repository Structure 76

RCOS Format e 7

What Happens When You Remove A File..................... 83

The CVSROOT/ Administrative Directory.................... 85
The config File.............. i 85
The modules File il 86
The commitinfo And loginfo And rcsinfo Files.......... 88
The verifymsg And rcsinfo Files....................... 90
The taginfo File.......... 91
The cvswrappers File......... 91
The editinfo File............. 91
The notify File........... i i 92
The checkoutlist File 92

Commit Emailscoo 93

Finding Out More.t 93

Advanced CVS ...ttt it iiiiiieinnnenanss 95

Watches (CVS As Telephone) 95
How Watches Work i, 95
Enabling Watches In The Repository 96
Using Watches In Development........................ 99
Ending An Editing Session........................... 100
Controlling What Actions Are Watched............... 101
Finding Out Who Is Watching What 102
Reminding People To Use Watches 104
What Watches Look Like In The Repository 106

Log Messages And Commit Emails.......................... 108

Changing A Log Message After Commit 109

Getting Rid Of A Working Copy ...« coooeineieeiin. .. 110

History — A Summary Of Repository Activity 110

Annotations — A Detailed View Of Project Activity........... 113

Annotations And Branches 116

Using Keyword Expansion................ 118

v Open Source Development With CVS

Going Out On A Limb (How To Work With Branches And Survive)

.. 120
Some Principles For Working With Branches.......... 120
Merging Repeatedly Into The Trunk.................. 120
The Dovetail Approach — Merging In And Out Of The

Trunk. ... 127

The Flying Fish Approach — A Simpler Way To Do It.. 128
Branches And Keyword Expansion — Natural Enemies. . 129

Tracking Third-Party Sources (Vendor Branches)............. 130
Exporting For Public Distribution........................... 134
The Humble Guru 135

Tips And Troubleshooting................... 137

The Usual Suspectscouiiii i 137
The Working Copy Administrative Area 137
Repository Permissions.............................. 140

General Troubleshooting Tips.........c.coiiiiinnieeenenn. 140

Some Real Life Problems (With Solutions)................... 141
CVS says it is waiting for a lock; what does that mean?

... 141
CVS claims a file is failing Up-To-Date check; what do I do?
... 142
The pserver access method is not working............. 142
The pserver access method is STILL not working...... 142
My commits seem to happen in pieces instead of atomically
... 143
CVS keeps changing file permissions; why does it do that?
... 144
CVS on Windows complains it cannot find my .cvspass file;
Why? 144
My working copy is on several different branches; help?
... 145
When I do export -d I sometimes miss recent commits.. 145
I get an error about val-tags; what should I do? 145
I am having problems with sticky tags; how do I get rid of
them?. 145
Checkouts/updates exit with error saying cannot expand
modules. 146
I cannot seem to turn off watches 146
My binary files are messed Upcouiiiaa... 146
CVS is not doing line-end conversion correctly......... 147
I need to remove a subdirectory in my project; how do I do
07 147
Can I copy .cvspass files or portions of them? 147
I just committed some files with the wrong log message
... 147

I need to move files around without losing revision history
... 147

How can I get a list of all tags in a project?........... 148

How can I get a list of all projects in a repository?..... 148
Some commands fail remotely but not locally; how should I

debug? 148
I do not see my problem covered in this chapter....... 149

I think T have discovered a bug in CVS; what do I do?.. 150
I have implemented a new feature for CVS; to whom do I

send it7 150
How can I keep up with changes to CVS?............. 150
CVS Referencecovvvviinnnnn. 151
Commands And Options 151
Organization And Conventions....................... 151
General Patterns In CVS Commands 151
Date Formats............. 152
Global Options 152
add ... 157
admin. 157
annotate 160
checkout 161
01110 162
diff .. 163
edit . o 165
editors 166
EXPOTt ot 166
BSCTVET & o\ttt et et et e e 167
history ... 167
IMPOTt . e 169
1 171
KServer 172
log . 172
login ... 174
logout. ... 174
93 c)) 174
rdiff. . 175
TElRASE . . ottt 176
1010072 S 176
172 < 177
TS24 178
StatUS . . .o 178
22 < AP 178
unedit. e 179
UPAate 179
watch 181
watchers 181
Keyword Substitution (RCS Keywords) 182
Controlling Keyword Expansion...................... 182

List Of Keywords 183

Open Source Development With CVS

Repository Administrative Files............................. 184
Storage And Editing L. 184
Shared Syntaxo i 184
Shared Variables.............o i 184
User Variables i, 185
checkoutlist.......... ... 185
commitinfo........... 185
config ... 185
CVSIZNOTE . . ot ettt et e e e 186
TOATA 210 1221 03 0 11 - 186
editinfo 187
history file. ... 187
loginfo ... 187
modules. 188
Notify ..o 188
PASSWA . . ottt e 189
resinfo ... 189
taginfo o 189
L0 ES S 190
val-tags ... 190
verifymsg. 190

Run Control Files. i 190
VST C ettt e 190
fLevsignore’ ... 191
o CVSPASS « ittt e 191
B =175 =Y o] o1 o= L 191

Working Copy Files......... .. i 191
‘CVS/Base/’ (directory)........covuuuiiieniniena... 192
CVS/BasSereV’ ..ottt e 192
‘CVS/Baserev.tmp’ovviiririiinenneeeenennns 192
‘CVS/Checkin.prog’ ..o 192
CVS/Entries’ . ..ot 192
‘CVS/Entries.Backup’cooveiiieiiinnn... 192
‘CVS/Entries.Logcovvvviiieneni 193
‘CVS/Entries.Static’o, 193
CCVS/NOtafy oo 193
‘CVS/Notify.tmpo 193
‘CVS/Repository’ ..., 193
CVS/ROOTL ittt 193
CVS/Tag . oo et e e e 193
‘CVS/Template’ottt 193
‘CVS/Update.prog’.......coouiiiiiiiiieeiiieann. 194

Environment Variables 194
SCOMSPECt 194
$CVS.CLIENTLOGcoviiiii e, 194
$CVS_CLIENTPORTcciieiiiieeeiannnn 194
SCVSEDITOR. ... oot 194

SCVSIGNOREo 194

vil

$CVSIGNORE_REMOTEROOT 194

SCVS PASSFILEt 194
SCVSRCMD PORT ... 195
SCVSREAD e 195
SCVSROOT ... 195

SCVS RSH ... o 195
SCVSSERVERottt 195
$CVSSERVER.SLEEP 195
SCVSUMASK . .. 195
SCVSWRAPPERS 195
SEDITOR ... e 195
$HOME %HOMEDRIVE% %HOMEPATH% 196
SPATH . ..o 196
$TEMP §TMP $TMPDIR..............coiiiiinnn.. 196
SVISUAL ..o 196
Third-Party Tools........................... 197
pcl-cvs — An Emacs Interface To CVS 197
Installing pcl-cvs. ... 198

Using pel-Cvs . ..o 199

Error Handling In pcl-cvs.............. 200

The Future Of pcl-cvs...... 200
cvsutils — General Utilities For Use With CVS................ 201
72 1 202

CVSAO .o e 202
CcvsChroot 202
CVSIMAAIN . . oottt e 203

LA £5] 030 h - 203
cvsdiscard 203

2o 203
cvsdate. 204

cvs2cl — Generate GNU-Style ChangeLogs 204
cvsq — Queue CVS Commands For Later Connection 205
cvslock — Lock Repositories For Atomicity 206
Other Packages 208
Writing Your Own Tools it 209
Indexcovvii ittt i 211

Appendix A GNU General Public License .. 213

Appendix B GNU Free Documentation License
....................................... 221

Introduction 3

Introduction

This is a set of free, online chapters about using CVS (Concurrent Versions System)
for collaboration and version control. It covers everything from CVS installation and basic
concepts all the way to advanced usage and administration. It is intended for anyone who
uses or plans to use CVS.

These chapters are excerpted from a larger work called Open Source Development With
CVS (published by The Coriolis Group (http://www.coriolis.com/), ISBN 1-57610-490-
7). The remainder of that book — chapters 1, 3, 5, and 7 — deals with the challenges and
philosophical issues of running an Open Source project using CVS.

While the free chapters here constitute a complete CVS book by themselves, we certainly
hope you’ll like them enough to purchase a treeware copy of the entire book! You can order it
directly from the publisher, at http://www.coriolis.com/bookstore/bookdetail.cfm?id=1576104907.

These chapters are released under the GNU General Public License (http://www.gnu.org/copyleft/gpl.h
For more information about free software in general, visit http://www.gnu.org/, and par-
ticularly http://www.gnu.org/philosophy/free-sw.html.

To submit comments or errata regarding any of this material, please send email to
bug-cvsbook@red-bean. com. For news and updates, visit http://cvsbook.red-bean. com/.

Open Source Development With CVS

An Overview of CVS 5

An Overview of CVS

I can’t imagine programming without it... that would be like parachuting without
a parachute!
—Brian Fitzpatrick on CVS

This chapter introduces the fundamentals of CVS, and then provides an in-depth guided
tour of everyday CVS usage. Concepts are presented sequentially, so if you're new to CVS,
the best way to read this is to start at the beginning and go straight through, without
skipping anything.

Basic Concepts

If you’ve never used CVS (or any version control system) before, it’s easy to get tripped
up by some of its underlying assumptions. What seems to cause the most initial confusion
about CVS is that it is used for two apparently unrelated purposes: record keeping and
collaboration. It turns out, however, that these two functions are closely connected.

Record keeping became necessary because people wanted to compare a program’s current
state with how it was at some point in the past. For example, in the normal course of
implementing a new feature, a developer may bring the program into a thoroughly broken
state, where it will probably remain until the feature is mostly finished. Unfortunately, this
is just the time when someone usually calls to report a bug in the last publicly released
version. To debug the problem (which may also exist in the current version of the sources),
the program has to be brought back to a useable state.

Restoring the state poses no difficulty if the source code history is kept under CVS. The
developer can simply say, in effect, "Give me the program as it was three weeks ago", or
perhaps "Give me the program as it was at the time of our last public release". If you've
never had this kind of convenient access to historical snapshots before, you may be surprised
at how quickly you come to depend on it. Personally, I always use revision control on my
coding projects now — it’s saved me many times.

To understand what this has to do with facilitating collaboration, we’ll need to take
a closer look at the mechanism that CVS provides to help numerous people work on the
same project. But before we do that, let’s take a look at a mechanism that CVS doesn’t
provide (or at least, doesn’t encourage): file locking. If you’ve used other version control
systems, you may be familiar with the lock-modify-unlock development model, wherein a
developer first obtains exclusive write access (a lock) to the file to be edited, makes the
changes, and then releases the lock to allow other developers access to the file. If someone
else already has a lock on the file, they have to "release" it before you can lock it and start
making changes (or, in some implementations, you may "steal" their lock, but that is often
an unpleasant surprise for them and not good practice!).

This system is workable if the developers know each other, know who’s planning to do
what at any given time, and can communicate with each other quickly if someone cannot
work because of access contention. However, if the developer group becomes too large or
too spread out, dealing with all the locking issues begins to chip away at coding time; it
becomes a constant hassle that can discourage people from getting real work done.

6 Open Source Development With CVS

CVS takes a more mellow approach. Rather than requiring that developers coordinate
with each other to avoid conflicts, CVS enables developers to edit simultaneously, assumes
the burden of integrating all the changes, and keeps track of any conflicts. This process
uses the copy-modify-merge model, which works as follows:

1. Developer A requests a working copy (a directory tree containing the files that make
up the project) from CVS. This is also known as "checking out" a working copy, like
checking a book out of the library.

2. Developer A edits freely in her working copy. At the same time, other developers may
be busy in their own working copies. Because these are all separate copies, there is
no interference — it is as though all of the developers have their own copy of the same
library book, and they’re all at work scribbling comments in the margins or rewriting
certain pages independently.

3. Developer A finishes her changes and commits them into CVS along with a "log mes-
sage", which is a comment explaining the nature and purpose of the changes. This is
like informing the library of what changes she made to the book and why. The library
then incorporates these changes into a "master" copy, where they are recorded for all
time.

4. Meanwhile, other developers can have CVS query the library to see if the master copy
has changed recently. If it has, CVS automatically updates their working copies. (This
part is magical and wonderful, and I hope you appreciate it. Imagine how different the
world would be if real books worked this way!)

As far as CVS is concerned, all developers on a project are equal. Deciding when to
update or when to commit is largely a matter of personal preference or project policy. One
common strategy for coding projects is to always update before commencing work on a
major change and to commit only when the changes are complete and tested so that the
master copy is always in a "runnable" state.

Perhaps you’re wondering what happens when developers A and B, each in their own
working copy, make different changes to the same area of text and then both commit their
changes? This is called a conflict, and CVS notices it as soon as developer B tries to
commit changes. Instead of allowing developer B to proceed, CVS announces that it has
discovered a conflict and places conflict markers (easily recognizable textual flags) at the
conflicting location in his copy. That location also shows both sets of changes, arranged
for easy comparison. Developer B must sort it all out and commit a new revision with the
conflict resolved. Perhaps the two developers will need to talk to each other to settle the
issue. CVS only alerts the developers that there is a conflict; it’s up to human beings to
actually resolve it.

What about the master copy? In official CVS terminology, it is called the project’s
repository. The repository is simply a file tree kept on a central server. Without going into
too much detail about its structure (but see [Repository Administration], page 63), let’s look
at what the repository must do to meet the requirements of the checkout-commit-update
cycle. Consider the following scenario:

1. Two developers, A and B, check out working copies of a project at the same time. The
project is at its starting point — no changes have been committed by anyone yet, so all
the files are in their original, pristine state.

2. Developer A gets right to work and soon commits her first batch of changes.

An Overview of CVS 7

3. Meanwhile, developer B watches television.

4. Developer A, hacking away like there’s no tomorrow, commits her second batch of
changes. Now, the repository’s history contains the original files, followed by A’s first
batch of changes, followed by this set of changes.

5. Meanwhile, developer B plays video games.

6. Suddenly, developer C joins the project and checks out a working copy from the repos-

itory. Developer C’s copy reflects A’s first two sets of changes, because they were
already in the repository when C checked out her copy.

7. Developer A, continuing to code as one possessed by spirits, completes and commits
her third batch of changes.

8. Finally, blissfully unaware of the recent frenzy of activity, developer B decides it’s time
to start work. He doesn’t bother to update his copy; he just commences editing files,
some of which may be files that A has worked in. Shortly thereafter, developer B
commits his first changes.

At this point, one of two things can happen. If none of the files edited by developer B
have been edited by A, the commit succeeds. However, if CVS realizes that some of B’s
files are out of date with respect to the repository’s latest copies, and those files have also
been changed by B in his working copy, CVS informs B that he must do an update before
committing those files.

When developer B runs the update, CVS merges all of A’s changes into B’s local copies
of the files. Some of A’s work may conflict with B’s uncommitted changes, and some may
not. Those parts that don’t are simply applied to B’s copies without further complication,
but the conflicting changes must be resolved by B before being committed.

If developer C does an update now, she’ll receive various new changes from the repository:
those from A’s third commit, and those from B’s first successful commit (which might really
come from B’s second attempt to commit, assuming B’s first attempt resulted in B being
forced to resolve conflicts).

In order for CVS to serve up changes, in the correct sequence, to developers whose
working copies may be out of sync by varying degrees, the repository needs to store all
commits since the project’s beginning. In practice, the CVS repository stores them all
as successive diffs. Thus, even for a very old working copy, CVS is able to calculate the
difference between the working copy’s files and the current state of the repository, and
is thereby able to bring the working copy up to date efficiently. This makes it easy for
developers to view the project’s history at any point and to revive even very old working
copies.

Although, strictly speaking, the repository could achieve the same results by other
means, in practice, storing diffs is a simple, intuitive means of implementing the neces-
sary functionality. The process has the added benefit that, by using patch appropriately,
CVS can reconstruct any previous state of the file tree and thus bring any working copy
from one state to another. It can allow someone to check out the project as it looked at
any particular time. It can also show the differences, in diff format, between two states of
the tree without affecting someone’s working copy.

Thus, the very features necessary to give convenient access to a project’s history are
also useful for providing a decentralized, uncoordinated developer team with the ability to
collaborate on the project.

8 Open Source Development With CVS

For now, you can ignore the details of setting up a repository, administering user access,
and navigating CVS-specific file formats (those will be covered in [Repository Administra-
tion], page 63). For the moment, we’ll concentrate on how to make changes in a working
copy.

But first, here is a quick review of terms:

Revision A committed change in the history of a file or set of files. A revision is one
"snapshot" in a constantly changing project.

Repository The master copy where CVS stores a project’s full revision history. Each
project has exactly one repository.

Working copy The copy in which you actually make changes to a project. There can
be many working copies of a given project; generally each developer has his or her own
copy.

Check out To request a working copy from the repository. Your working copy reflects
the state of the project as of the moment you checked it out; when you and other
developers make changes, you must use commit and update to "publish" your changes
and view others’ changes.

Commit To send changes from your working copy into the central repository. Also
known as check-in.

Log message A comment you attach to a revision when you commit it, describing the
changes. Others can page through the log messages to get a summary of what’s been
going on in a project.

Update To bring others’ changes from the repository into your working copy and to
show if your working copy has any uncommitted changes. Be careful not to confuse
this with commit; they are complementary operations. Mnemonic: update brings your
working copy up to date with the repository copy.

Conflict The situation when two developers try to commit changes to the same region
of the same file. CVS notices and points out conflicts, but the developers must resolve
them.

A Day With CVS

This section describes some basic CVS operations, then follows with a sample session
covering typical CVS usage. As the guided tour progresses, we’ll also start to look at how
CVS works internally.

Although you don’t need to understand every last detail of CVS’s implementation to use
it, a basic knowledge of how it works is invaluable in choosing the best way to achieve a given
result. CVS is more like a bicycle than an automobile, in the sense that its mechanisms
are entirely transparent to anyone who cares to look. As with a bicycle, you can just hop
on and start riding immediately. However, if you take a few moments to study how the
gears work, you’ll be able to ride it much more efficiently. (In the case of CVS, I'm not sure
whether transparency was a deliberate design decision or an accident, but it does seem to
be a property shared by many free programs. Externally visible implementations have the
advantage of encouraging the users to become contributing developers by exposing them to
the system’s inner workings right from the start.)

An Overview of CVS 9

Conventions Used In This Tour

The tour takes place in a Unix environment. CVS also runs on Windows and Macintosh
operating systems, and Tim Endres of Ice Engineering has even written a Java client (see
http://www.trustice.com/java/jcvs/), which can be run anywhere Java runs. However,
I’'m going to take a wild guess and assume that the majority of CVS users — present and
potential — are most likely working in a Unix command-line environment. If you aren’t one
of these, the examples in the tour should be easy to translate to other interfaces. Once you
understand the concepts, you can sit down at any CVS front end and work with it (trust
me, I’ve done it many times).

The examples in the tour are oriented toward people who will be using CVS to keep track
of programming projects. However, CVS operations are applicable to all text documents,
not just source code.

The tour also assumes that you already have CVS installed (it’s present by default on
many of the popular free Unix systems, so you might already have it without knowing it)
and that you have access to a repository. Even if you are not set up, you can still benefit
from reading the tour. In [Repository Administration], page 63, you’ll learn how to install
CVS and set up repositories.

Assuming CVS is installed, you should take a moment to find the online CVS man-
ual. Known familiarly as the "Cederqvist" (after Per Cederqvist, its original author), it
comes with the CVS source distribution and is usually the most up-to-date reference avail-
able. It’s written in Texinfo format and should be available on Unix systems in the "Info"
documentation hierarchy. You can read it either with the command line info program

floss$ info cvs

or by pressing Ctrl+H and then typing "i" inside Emacs. If neither of these works for
you, consult your local Unix guru (or see [Repository Administration], page 63 regarding

installation issues). You’ll definitely want to have the Cederqvist at your fingertips if you're
going to be using CVS regularly.

Invoking CVS

CVS is one program, but it can perform many different actions: updating, committing,
branching, diffing, and so on. When you invoke CVS, you must specify which action you
want to perform. Thus, the format of a CVS invocation is:

floss$ cvs command
For example, you can use

floss$ cvs update
floss$ cvs diff
floss$ cvs commit

and so on. (Don’t bother to try running any of those particular commands yet, though;
they won’t do anything until you’re in a working copy, which we’ll get to shortly.)

Both CVS and the command can take options. Options that affect the behavior of
CVS, independently of the command being run, are called global options; command-specific
options are just called command options. Global options always go to the left of the
command; command options, to its right. So in

Open Source Development With CVS

floss$ cvs -Q update -p
-Q is a global option, and -p is a command option. (If you’re curious, -Q means "quietly"-
that is, suppress all diagnostic output, and print error messages only if the command ab-
solutely cannot be completed for some reason; -p means to send the results of update to
standard output instead of to files.)

Accessing A Repository

Before you can do anything, you must tell CVS the location of the repository you’ll be
accessing. This isn’t a concern if you already have a working copy checked out — any working
copy knows what repository it came from, so CVS can automatically deduce the repository
for a given working copy. However, let’s assume you don’t have a working copy yet, so you
need to tell CVS explicitly where to go. This is done with the -d global option (the -d
stands for "directory", an abbreviation for which there is a historical justification, although
-r for "repository" might have been better), followed by the path to the repository. For
example, assuming the repository is on the local machine in /usr/local/cvs (a fairly standard
location):

floss$ cvs -d /usr/local/cvs command

In many cases, however, the repository is on another machine and must therefore be
reached over the network. CVS provides a choice of network access methods; which one
you’ll use depends mostly on the security needs of the repository machine (hereinafter
referred to as "the server"). Setting up the server to allow various remote access methods
is covered in [Repository Administration], page 63; here we’ll deal only with the client side.

Fortunately, all the remote access methods share a common invocation syntax. In gen-
eral, to specify a remote repository as opposed to a local one, you just use a longer repository
path. You first name the access method, delimited on each side by colons, followed by the
username and the server name (joined with an @ sign), another separator colon, and finally
the path to the repository directory on the server.

Let’s look at the pserver access method, which stands for "password-authenticated
server":
floss$ cvs -d :pserver:jrandom@cvs.foobar.com:/usr/local/cvs login
(Logging in to jrandom@cvs.foobar.com)
CVS password: (enter your CVS password here)
floss$

The long repository path following -d told CVS to use the pserver access method,
with the username jrandom, on the server cvs.foobar.com, which has a CVS repository
in /usr/local/cvs. There’s no requirement that the hostname be "cvs.something.com" by
the way; that’s a common convention, but it could just as easily have been:

floss$ cvs -d :pserver:jrandom@fish.foobar.org:/usr/local/cvs command

The command actually run was login, which verifies that you are authorized to work with
this repository. It prompts for a password, then contacts the server to verify the password.
Following Unix custom, cvs login returns silently if the login succeeds; it shows an error
message if it fails (for instance, because the password is incorrect).

You only have to log in once from your local machine to a given CVS server. After a
successful login, CVS stores the password in your home directory, in a file called .cvspass.

An Overview of CVS

It consults that file every time a repository is contacted via the pserver method, so you
only have to run login the first time you access a given CVS server from a particular client
machine. Of course, you can rerun cvs login anytime if the password changes.

Note: pserver is currently the only access method requiring an initial login like this; with
the others, you can start running regular CVS commands immediately.

Once you’ve stored the authentication information in your .cvspass file, you can run
other CVS commands using the same command-line syntax:

floss$ cvs -d :pserver:jrandom@cvs.foobar.com:/usr/local/cvs command

Getting pserver to work in Windows may require an extra step. Windows doesn’t have
the Unix concept of a home directory, so CVS doesn’t know where to put the .cvspass file.
You’ll have to specify a location. It’s normal to designate the root of the C: drive as the
home directory:

C:\WINDOWS> set HOME=C:

C:\WINDOWS> cvs -d :pserver:jrandom@cvs.foobar.com:/usr/local/cvs login
(Logging in to jrandom@cvs.foobar.com)

CVS password: (enter password here)

C:\WINDOWS>

Any folder in the file system will suffice. You may want to avoid network drives, though,
because the contents of your .cvspass file would then be visible to anyone with access to the
drive.

In addition to pserver, CVS supports the ext method (which uses an external connec-
tion program, such as rsh or ssh), kserver (for the Kerberos security system version 4),
and gserver (which uses the GSSAPI, or Generic Security Services API, and also handles
Kerberos versions 5 and higher). These methods are similar to pserver, but each has its
own idiosyncrasies.

Of these, the ext method is probably the most commonly used. If you can log into the
server with rsh or ssh, you can use the ext method. You can test it like this:

floss$ rsh -1 jrandom cvs.foobar.com
Password: enter your login password here

Okay, let’s assume you successfully logged in and logged out of the server with rsh, so
now you’re back on the original client machine:

floss$ CVS_RSH=rsh; export CVS_RSH
floss$ cvs -d :ext:jrandom@cvs.foobar.com:/usr/local/cvs command

The first line sets (in Unix Bourne shell syntax) the CVS_RSH environment variable to
rsh, which tells CVS to use the rsh program to connect. The second line can be any CVS
command; you will be prompted for your password so CVS can log into the server.

If you're in C shell rather than in Bourne shell, try this:
floss), setenv CVS_RSH rsh

and for Windows, try this:
C:\WINDOWS> set CVS_RSH=rsh

The rest of the tour will use the Bourne syntax; translate for your environment as
necessary.

To use ssh (the Secure Shell) instead of rsh, just set the CVS_RSH variable appropriately:

Open Source Development With CVS

floss$ CVS_RSH=ssh; export CVS_RSH

Don’t get thrown by the fact that the variable’s name is CVS_RSH but you're setting
its value to ssh. There are historical reasons for this (the catch-all Unix excuse, I know).
CVS_RSH can point to the name of any program capable of logging you into the remote
server, running commands, and receiving their output. After rsh, ssh is probably the most
common such program, although there are probably others. Note that this program must
not modify its data stream in any way. This disqualifies the Windows NT rsh, because
it converts (or attempts to convert) between the DOS and Unix line-ending conventions.
You’d have to get some other rsh for Windows or use a different access method.

The gserver and kserver methods are not used as often as the others and are not covered
here. They’re quite similar to what we’ve covered so far; see the Cederqvist for details.

If you only use one repository and don’t want to type -d repos each time, just set the
CVSROOT environment variable (which perhaps should have been named CVSREPOS,
but it’s too late to change that now):

floss$ CVSROOT=/usr/local/cvs
floss$ export CVSROOT

floss$ echo $CVSROOT
/usr/local/cvs

floss$

or maybe
floss$ CVSROOT=:pserver:jrandom@cvs.foobar.com:/usr/local/cvs
floss$ export CVSROOT
floss$ echo $CVSROOT

:pserver: jrandom@cvs.foobar.com: /usr/local/cvs
floss$

The rest of this tour assumes that you’'ve set CVSROOT to point to your repository, so
the examples will not show the -d option. If you need to access many different repositories,
you should not set CVSROOT and should just use -d repos when you need to specify the
repository.

Starting A New Project

If you’re learning CVS in order to work on a project that’s already under CVS control
(that is, it is kept in a repository somewhere), you’ll probably want to skip down to the next
section, "Checking Out A Working Copy." On the other hand, if you want to take existing
source code and put it into CVS, this is the section for you. Note that it still assumes you
have access to an existing repository; see [Repository Administration], page 63 if you need
to set up a repository first.

Putting a new project into a CVS repository is known as importing. The CVS command,
as you may have guessed, is
floss$ cvs import
except that it needs some more options (and needs to be in the right location) to succeed.
First, go into the top-level directory of your project tree:

floss$ cd myproj
floss$ 1s

An Overview of CVS

README.txt a-subdir/ b-subdir/ hello.c
floss$

This project has two files - README.txt and hello.c — in the top level, plus two subdi-
rectories — a-subdir and b-subdir — plus some more files (not shown in the example) inside
those subdirectories. When you import a project, CVS imports everything in the tree,
starting from the current directory and working its way down. Therefore, you should make
sure that the only files in the tree are ones you want to be permanent parts of the project.
Any old backup files, scratch files, and so on should all be cleaned out.

The general syntax of an import command is

floss$ cvs import -m "log msg" projname vendortag releasetag

The -m flag (for message) is for specifying a short message describing the import. This
will be the first log message for the entire project; every commit thereafter will also have
its own log message. These messages are mandatory; if you don’t give the -m flag, CVS
automatically starts up an editor (by consulting the EDITOR environment variable) for
you to type a log message in. After you save the log message and exit the editor, the import
then continues.

The next argument is the project’s name (we’ll use "myproj"). This is the name under
which you’ll check out the project from the repository. (What actually happens is that
a directory of that name gets created in the repository, but more on that in [Repository
Administration], page 63.) The name you choose now does not need to be the same as the
name of the current directory, although in most cases it usually is.

The vendortag and releasetag arguments are a bit of bookkeeping for CVS. Don’t worry
about them now; it hardly matters what you use. In [Advanced CVS], page 95 you’ll learn
about the rare circumstances where they’re significant. For now, we’ll use a username and
"start" for those arguments.

We're ready to run import:

floss$ cvs import -m "initial import into CVS" myproj jrandom start
N myproj/hello.c

N myproj/README.txt

cvs import: Importing /usr/local/cvs/myproj/a-subdir

N myproj/a-subdir/whatever.c

cvs import: Importing /usr/local/cvs/myproj/a-subdir/subsubdir

N myproj/a-subdir/subsubdir/fish.c

cvs import: Importing /usr/local/cvs/myproj/b-subdir

N myproj/b-subdir/random.c

No conflicts created by this import
floss$
Congratulations! If you ran that command (or something similar), you’ve finally done
something that affects the repository.

Reading over the output of the import command, you’ll notice that CVS precedes each
filename with a single letter — in this case, "N" for "new file". The use of a single letter on
the left to indicate the status of a file is a general pattern in CVS command output. We’ll
see it later in checkout and update as well.

You might think that, having just imported the project, you can start working in the tree
immediately. This is not the case, however. The current directory tree is still not a CVS

Open Source Development With CVS

working copy. It was the source for the import command, true, but it wasn’t magically
changed into a CVS working copy merely by virtue of having been imported. To get a
working copy, you need to check one out from the repository.

First, though, you might want to archive the current project tree. The reason is that once
the sources are in CVS, you don’t want to confuse yourself by accidentally editing copies
that aren’t in version control (because those changes won’t become part of the project’s
history). You want to do all of your editing in a working copy from now on. However, you
also don’t want to remove the imported tree entirely, because you haven’t yet verified that
the repository actually has the files. Of course, you can be 99.999 percent certain that it
does because the import command returned with no error, but why take chances? Paranoia
pays, as every programmer knows. Therefore, do something like this:

floss$ 1s

README.txt a-subdir/ Db-subdir/ Thello.c
floss$ cd ..

floss$ 1s

myproj/

floss$ mv myproj was_myproj

floss$ 1s

was_myproj/

floss$

There. You still have the original files, but they’re clearly named as an obsolete version,
so they won’t be in the way when you get a real working copy. Now you’re ready to check
out.

Checking Out A Working Copy

The command to check out a project is exactly what you think it is:

floss$ cvs checkout myproj

cvs checkout: Updating myproj

U myproj/README.txt

U myproj/hello.c

cvs checkout: Updating myproj/a-subdir

U myproj/a-subdir/whatever.c

cvs checkout: Updating myproj/a-subdir/subsubdir
U myproj/a-subdir/subsubdir/fish.c

cvs checkout: Updating myproj/b-subdir

U myproj/b-subdir/random.c

floss$ 1s

myproj/ was_myproj/

floss$ cd myproj

floss$ 1s

cvs/ README.txt a-subdir/ b-subdir/ hello.c
floss$

Behold — your first working copy! Its contents are exactly the same as what you imported,
with the addition of a subdirectory named "CVS". That’s where CVS stores version control
information. Actually, each directory in the project has a CVS subdirectory:

An Overview of CVS

floss$ 1ls a-subdir

cvs/ subsubdir/ whatever.c
floss$ 1ls a-subdir/subsubdir/

cvs/ fish.c

floss$ 1ls b-subdir

Ccvs/ random.c

The fact that CVS keeps its revision information in subdirectories named CVS means
that your project can never contain subdirectories of its own named CVS. In practice, I've
never heard of this being a problem.

Before editing any files, let’s take a peek inside the black box:
floss$ cd CVS

floss$ 1s

Entries Repository Root
floss$ cat Root
/usr/local/cvs

floss$ cat Repository

myproj

floss$

Nothing too mysterious there. The Root file points to repository, and the Repository
file points to a project inside the repository. If that’s a little confusing, let me explain.

There is a longstanding confusion about terminology in CVS. The word "repository" is
used to refer to two different things. Sometimes, it means the root directory of a repos-
itory (for example, /usr/local/cvs), which can contain many projects; this is what the
Root file refers to. But other times, it means one particular project-specific subdirectory
within a repository root (for example, /usr/local/cvs/myproj, /usr/local/cvs/yourproj, or
/usr/local/cvs/fish). The Repository file inside a CVS subdirectory takes the latter mean-
ing.

In this book, "repository" generally means Root (that is, the top-level repository), al-
though it may occasionally be used to mean a project-specific subdirectory. If the intended
sense can’t be figured out from the context, there will be clarifying text. Note that the
Repository file may sometimes contain an absolute path to the project name instead of a
relative path. This can make it slightly redundant with the Root file:

floss$ cd CVS

floss$ cat Root

:pserver: jrandom@cvs.foobar.com: /usr/local/cvs
floss$ cat Repository

/usr/local/cvs/myproj

floss$

The Entries file stores information about the individual files in the project. Each line
deals with one file, and there are only lines for files or subdirectories in the immediate parent
directory. Here’s the top-level CVS/Entries file in myproj:

floss$ cat Entries

/README.txt/1.1.1.1/Sun Apr 18 18:18:22 1999//
/hello.c/1.1.1.1/Sun Apr 18 18:18:22 1999//
D/a-subdir////

D/b-subdir////

Open Source Development With CVS

The format of each line is
/filename/revision number/last modification date//

and the directory lines are prefixed with "D". (CVS doesn’t really keep a change history
for directories, so the fields for revision number and datestamp are empty.)

The datestamps record the date and time of the last update (in Universal Time, not
local time) of the files in the working copy. That way, CVS can easily tell whether a file
has been modified since the last checkout, update, or commit. If the file system timestamp
differs from the timestamp in the CVS/Entries file, CVS knows (without even having to
consult the repository) that the file was probably modified.

If you take a look at the CVS/* files in one of the subdirectories

floss$ cd a-subdir/CVS

floss$ cat Root

/usr/local/cvs

floss$ cat Repository

myproj/a-subdir

floss$ cat Entries

/whatever.c/1.1.1.1/Sun Apr 18 18:18:22 1999//
D/subsubdir////

floss$

you can see that the root repository has not changed, but the Repository file spells out
the location of this subdirectory of the project, and the Entries file contains different lines.

Immediately after import, the revision number of every file in the project is shown as
1.1.1.1. This initial revision number is a bit of a special case, so we won’t examine it in
detail just yet; we’ll take a closer look at revision numbers after we’ve committed some
changes.

Version Versus Revision

The internal revision number that CVS keeps for each file is unrelated to the version
number of the software product of which the files are part. For example, you may have
a project composed of three files, whose internal revision numbers on May 3, 1999, were
1.2, 1.7, and 2.48. On that day, you package up a new release of the software and release
it as SlickoSoft Version 3. This is purely a marketing decision and doesn’t affect the CVS
revisions at all. The CVS revision numbers are invisible to your customers (unless you give
them repository access); the only publicly visible number is the "3" in Version 3. You could
have called it Version 1729 as far as CVS is concerned — the version number (or "release"
number) has nothing to do with CVS’s internal change tracking.

To avoid confusion, I’ll use the word "revision" to refer exclusively to the internal revision
numbers of files under CVS control. I may still call CVS a "version control system", however,
because "revision control system" just sounds too awkward.

Making A Change

The project as it stands doesn’t do much. Here are the contents of hello.c:

floss$ cat hello.c
#include <stdio.h>

An Overview of CVS

void
main ()

{
printf ("Hello, world!\n");
}

Let’s make the first change to the project since importing it; we’ll add the line
printf ("Goodbye, world!\n");
right after the Hello, world!. Invoke your favorite editor and make the change:

floss$ emacs hello.c

This was a fairly simple change, one where you’re not likely to forget what you did. But
in a larger, more complex project, it’s quite possible you may edit a file, be interrupted by
something else, and return several days later and be unable to remember exactly what you
did, or even to remember if you changed anything at all. Which brings us to our first "CVS
Saves Your Life" situation: comparing your working copy against the repository.

Finding Out What You (And Others) Did — update And diff

Previously, I've talked about updating as a way of bringing changes down from the
repository into your working copy — that is, as a way of getting other people’s changes.
However, update is really a bit more complex; it compares the overall state of the working
copy with the state of the project in the repository. Even if nothing in the repository has
changed since checkout, something in the working copy may have, and update will show
that, too:

floss$ cvs update

cvs update: Updating .

M hello.c

cvs update: Updating a-subdir

cvs update: Updating a-subdir/subsubdir
cvs update: Updating b-subdir

The M next to hello.c means the file has been modified since it was last checked out,
and the modifications have not yet been committed to the repository.

Sometimes, merely knowing which files you’ve edited is all you need. However, if you
want a more detailed look at the changes, you can get a full report in diff format. The diff
command compares the possibly modified files in the working copy to their counterparts in
the repository and displays any differences:

floss$ cvs diff
cvs diff: Diffing .
Index: hello.c

RCS file: /usr/local/cvs/myproj/hello.c,v
retrieving revision 1.1.1.1

diff -r1.1.1.1 hello.c

6a7

> printf ("Goodbye, world!\n");

Open Source Development With CVS

cvs diff: Diffing a-subdir

cvs diff: Diffing a-subdir/subsubdir

cvs diff: Diffing b-subdir

That’s helpful, if a bit obscure, but there’s still a lot of cruft in the output. For starters,

you can ignore most of the first few lines. They just name the repository file and give the
number of the last checked-in revision. These are useful pieces of information under other
circumstances (we’ll look more closely at them later), but you don’t need them when you’re
just trying to get a sense of what changes have been made in the working copy.

A more serious impediment to reading the diff is that CVS is announcing its entry as
it goes into each directory during the update. This can be useful during long updates on
large projects, as it gives you a sense of how much longer the command will take, but right
now it’s just getting in the way of reading the diff. Let’s tell CVS to be quiet about where
it’s working, with the -Q global option:

floss$ cvs -Q diff
Index: hello.c

RCS file: /usr/local/cvs/myproj/hello.c,v
retrieving revision 1.1.1.1

diff -r1.1.1.1 hello.c

6a7

> printf ("Goodbye, world!\n");

Better — at least some of the cruft is gone. However, the diff is still hard to read. It’s
telling you that at line 6, a new line was added (that is, what became line 7), whose contents
were:

printf ("Goodbye, world!\n");

The preceding ">" in the diff tells you that this line is present in the newer version of
the file but not in the older one.

The format could be made even more readable, however. Most people find "context" diff
format easier to read because it displays a few lines of context on either side of a change.
Context diffs are generated by passing the -c flag to diff:

floss$ cvs -Q diff -c
Index: hello.c

RCS file: /usr/local/cvs/myproj/hello.c,v
retrieving revision 1.1.1.1

diff -c¢ -r1.1.1.1 hello.c

**xx hello.c 1999/04/18 18:18:22 1.1.1.1
--- hello.c 1999/04/19 02:17:07

sk sk o o ok ok ok sk sk o sk o

*kk 4T dkkkk

printf ("Hello, world!\n");
+ printf ("Goodbye, world!\n");

An Overview of CVS

Now that’s clarity! Even if you're not used to reading context diffs, a glance at the
preceding output will probably make it obvious what happened: a new line was added (the
+ in the first column signifies an added line) between the line that prints Hello, world! and
the final curly brace.

We don’t need to be able to read context diffs perfectly (that’s patch’s job), but it’s
worth taking the time to acquire at least a passing familiarity with the format. The first
two lines (after the introductory cruft) are

*%% hello.c 1999/04/18 18:18:22 1.1.1.1
--— hello.c 1999/04/19 02:17:07

and they tell you what is being diffed against what. In this case, revision 1.1.1.1 of
hello.c is being compared against a modified version of the same file (thus, there’s no
revision number for the second line, because only the working copy’s changes haven’t been
committed to the repository yet). The lines of asterisks and dashes identify sections farther
down in the diff. Later on, a line of asterisks, with a line number range embedded, precedes
a section from the original file. Then a line of dashes, with a new and potentially different
line number range embedded, precedes a section from the modified file. These sections are
organized into contrasting pairs (known as "hunks"), one side from the old file and the
other side from the new.

Our diff has one hunk:

sk ke k ko ok ok ok ok ok ok ok ok
K%k 4,7 kkkk

printf ("Hello, world!\n");
+ printf ("Goodbye, world!\n");
}

The first section of the hunk is empty, meaning that no material was removed from the
original file. The second section shows that, in the corresponding place in the new file,
one line has been added; it’s marked with a "+". (When diff quotes excerpts from files, it
reserves the first two columns on the left for special codes, such as "+" so the entire excerpt
appears to be indented by two spaces. This extra indentation is stripped off when the diff
is applied, of course.)

The line number ranges show the hunk’s coverage, including context lines. In the original
file, the hunk was in lines 4 through 7; in the new file, it’s lines 4 through 8 (because a line
has been added). Note that the diff didn’t need to show any material from the original file
because nothing was removed; it just showed the range and moved on to the second half of
the hunk.

Here’s another context diff, from an actual project of mine:

floss$ cvs -Q diff -c
Index: cvs2cl.pl

RCS file: /usr/local/cvs/kfogel/code/cvs2cl/cvs2cl.pl,v
retrieving revision 1.76

diff -c -r1.76 cvs2cl.pl

x¥x cvs2cl.pl 1999/04/13 22:29:44 1.76

Open Source Development With CVS

--- cvs2cl.pl 1999/04/19 05:41:37

sk sk ok sk ok ok ok ok ok ok ok ok o ok

kkk 212,218 kkkk
can contain uppercase and lowercase letters, digits, ’-’,
and ’_’. However, it’s not our place to enforce that, so
we’ll allow anything CVS hands us to be a tag:

! /"\s([":1+): ([0-9.1+)%/;
push (@{$symbolic_names{$2}}, $1);

}
}
-- 212,218 --
can contain uppercase and lowercase letters, digits, ’-’,
and ’_’. However, it’s not our place to enforce that, so
we’ll allow anything CVS hands us to be a tag:
! /"\s([":1+4): ([\d.1+)8$/;
push (@{$symbolic_names{$2}}, $1);
}
}
The exclamation point shows that the marked line differs between the old and new files.
Since there are no "+" or "-" signs, we know that the total number of lines in the file has

remained the same.
Here’s one more context diff from the same project, slightly more complex this time:

floss$ cvs -Q diff -c
Index: cvs2cl.pl

RCS file: /usr/local/cvs/kfogel/code/cvs2cl/cvs2cl.pl,v
retrieving revision 1.76
diff -c -r1.76 cvs2cl.pl

*xk*x cvs2cl.pl 1999/04/13 22:29:44 1.76

-—- cvs2cl.pl 1999/04/19 05:58:51

st ok ok sk ook ok ko s ok ok

®ick 207,217 sokkk

X
else # we’re looking at a tag name, so parse & store it
{

According to the Cederqvist manual, in node "Tags", "Tag
names must start with an uppercase or lowercase letter and
can contain uppercase and lowercase letters, digits, ’-7,
and ’_’. However, it’s not our place to enforce that, so
- # we’ll allow anything CVS hands us to be a tag:
/"\s([":1+): ([0-9.1+)%/;
push (@{$symbolic_names{$2}}, $1);
}
207,212 --
sk sk ok sk ok ok ok ok ok ok ok ok ok ok
dkk 223 228 kkkk
-—- 218,225 —-
if (/"revision (\d\.[0-9.1+)$/) {

H OH H R

An Overview of CVS

$revision = "$1";

}
+ # This line was added, I admit, solely for the sake of a diff example.

If have file name but not time and author, and see date or
author, then grab them:

This diff has two hunks. In the first, five lines were removed (these lines are only shown
in the first section of the hunk, and the second section’s line count shows that it has five
fewer lines). An unbroken line of asterisks forms the boundary between hunks, and in the
second hunk we see that two lines have been added: a blank line and a pointless comment.
Note how the line numbers compensate for the effect of the previous hunk. In the original
file, the second hunk’s range of the area was lines 223 through 228; in the new file, because
of the deletion that took place in the first hunk, the range is in lines 218 through 225.

Congratulations, you are probably now as expert as you’ll ever need to be at reading
diffs.

CVS And Implied Arguments

In each of the CVS commands so far, you may have noticed that no files were specified
on the command line. We ran
floss$ cvs diff
instead of
floss$ cvs diff hello.c
and
floss$ cvs update
instead of
floss$ cvs update hello.c
The principle at work here is that if you don’t name any files, CVS acts on all files for
which the command could possibly be appropriate. This even includes files in subdirecto-
ries beneath the current directory; CVS automatically descends from the current directory
through every subdirectory in the tree. For example, if you modified b-subdir/random.c
and a-subdir/subsubdir/fish.c, running update may result in this:
floss$ cvs update
cvs update: Updating .
M hello.c
cvs update: Updating a-subdir
cvs update: Updating a-subdir/subsubdir
M a-subdir/subsubdir/fish.c
cvs update: Updating b-subdir
M b-subdir/random.c
floss$
or better yet:

floss$ cvs —-q update
M hello.c

Open Source Development With CVS

M a-subdir/subsubdir/fish.c
M b-subdir/random.c
floss$

Note: The -q flag is a less emphatic version of -Q. Had we used -Q, the command would
have printed out nothing at all, because the modification notices are considered nonessential
informational messages. Using the lowercase -q is less strict; it suppresses the messages we
probably don’t want, while allowing certain, more useful messages to pass through.

You can also name specific files for the update:

floss$ cvs update hello.c b-subdir/random.c
M hello.c

M b-subdir/random.c
floss$

and CVS will only examine those files, ignoring all others.

In truth, it’s more common to run update without restricting it to certain files. In most
situations, you’ll want to update the entire directory tree at once. Remember, the updates
we’re doing here only show that some files have been locally modified, because nothing has
changed yet in the repository. When other people are working on the project with you,
there’s always the chance that running update will pull some new changes down from the
repository and incorporate them into your local files. In that case, you may find it slightly
more useful to name which files you want updated.

The same principle can be applied to other CVS commands. For example, with diff, you
can choose to view the changes one file at a time

floss$ cvs diff -c b-subdir/random.c
Index: b-subdir/random.c

RCS file: /usr/local/cvs/myproj/b-subdir/random.c,v
retrieving revision 1.1.1.1
diff -c -r1.1.1.1 random.c

***x b-subdir/random.c 1999/04/18 18:18:22 1.1.1.1
--— b-subdir/random.c 1999/04/19 06:09:48
sk ke ke o o sk sk ok ok ok e s ok sk ok

sodok 1 kkkok

! /¥ A completely empty C file. */
—_— 1,8 J—
/* Print out a random number. */

#include <stdio.h>

{

!

!

!

!

! void main ()
!

! printf ("a random number\n");
!

}

or see all the changes at once (hang on to your seat, this is going to be a big diff):

floss$ cvs -Q diff -c
Index: hello.c

An Overview of CVS

RCS file: /usr/local/cvs/myproj/hello.c,v
retrieving revision 1.1.1.1

diff -c -r1.1.1.1 hello.c

*%% hello.c 1999/04/18 18:18:22 1.1.1.1
--- hello.c 1999/04/19 02:17:07

sk ok ks ok ko s ok ko

kkk 4T kkkk

printf ("Hello, world!\n");
+ printf ("Goodbye, world!\n");
}

Index: a-subdir/subsubdir/fish.c

RCS file: /usr/local/cvs/myproj/a-subdir/subsubdir/fish.c,v
retrieving revision 1.1.1.1
diff -¢ -r1.1.1.1 fish.c

*** a-subdir/subsubdir/fish.c 1999/04/18 18:18:22 1.1.1.1
-—- a-subdir/subsubdir/fish.c 1999/04/19 06:08:50
sk ke ke o o sk ok sk ke ok ok sk ok

dokok 1 kokokok

! /¥ A completely empty C file. */
—_ 1’8 —_

#include <stdio.h>

!

!

! void main ()

' {

! while (1) {

! printf ("fish\n");
'}

'}

Index: b-subdir/random.c

RCS file: /usr/local/cvs/myproj/b-subdir/random.c,v
retrieving revision 1.1.1.1
diff -c -r1.1.1.1 random.c

% b-subdir/random.c 1999/04/18 18:18:22 1.1.1.1
--— b-subdir/random.c 1999/04/19 06:09:48
sk sk ok k k k ko ok ok ok ok o ok

*okk 1 ok
! /* A completely empty C file. */
—_— 1’8 —_
/* Print out a random number. */

#include <stdio.h>

void main ()

{

Open Source Development With CVS

! printf ("a random number\n");
'}
Anyway, as you can see from these diffs, this project is clearly ready for prime time.
Let’s commit the changes to the repository.

Committing

The commit command sends modifications to the repository. If you don’t name any files,
a commit will send all changes to the repository; otherwise, you can pass the names of one
or more files to be committed (other files would be ignored, in that case).

Here, we commit one file by name and two by inference:

floss$ cvs commit -m "print goodbye too" hello.c
Checking in hello.c;
/usr/local/cvs/myproj/hello.c,v <-- hello.c
new revision: 1.2; previous revision: 1.1

done

floss$ cvs commit -m "filled out C code"

cvs commit: Examining .

cvs commit: Examining a-subdir

cvs commit: Examining a-subdir/subsubdir

cvs commit: Examining b-subdir

Checking in a-subdir/subsubdir/fish.c;
/usr/local/cvs/myproj/a-subdir/subsubdir/fish.c,v <-- fish.c
new revision: 1.2; previous revision: 1.1

done

Checking in b-subdir/random.c;
/usr/local/cvs/myproj/b-subdir/random.c,v <-- random.c
new revision: 1.2; previous revision: 1.1

done

floss$

Take a moment to read over the output carefully. Most of what it says is pretty self-
explanatory. One thing you may notice is that revision numbers have been incremented
(as expected), but the original revisions are listed as 1.1 instead of 1.1.1.1 as we saw in the
Entries file earlier.

There is an explanation for this discrepancy, but it’s not very important. It concerns a
special meaning that CVS attaches to revision 1.1.1.1. For most purposes, we can just say
that files receive a revision number of 1.1 when imported, but the number is displayed — for
reasons known only to CVS — as 1.1.1.1 in the Entries file, until the first commit.

Revision Numbers

Each file in a project has its own revision number. When a file is committed, the last
portion of the revision number is incremented by one. Thus, at any given time, the various
files comprising a project may have very different revision numbers. This just means that
some files have been changed (committed) more often than others.

(You may be wondering, what’s the point of the part to the left of the decimal point,
if only the part on the right ever changes? Actually, although CVS never automatically

An Overview of CVS

increments the number on the left, that number can be incremented on request by a user.
This is a rarely used feature, and we won’t cover it in this tour.)

In the example project that we’ve been using, we just committed changes to three files.
Each of those files is now revision 1.2, but the remaining files in the project are still revision
1.1. When you check out a project, you get each file at its highest revision so far. Here
is what gsmith would see if he checked out myproj right now and looked at the revision
numbers for the top-level directory:

paste$ cvs —-q -d :pserver:gsmith@cvs.foobar.com:/usr/local/cvs co myproj
U myproj/README.txt

U myproj/hello.c

U myproj/a-subdir/whatever.c

U myproj/a-subdir/subsubdir/fish.c

U myproj/b-subdir/random.c

paste$ cd myproj/CVs

paste$ cat Entries

/README.txt/1.1.1.1/Sun Apr 18 18:18:22 1999//
/hello.c/1.2/Mon Apr 19 06:35:15 1999//
D/a-subdir////

D/b-subdir////

paste$

The file hello.c (among others) is now at revision 1.2, while README.txt is still at the
initial revision (revision 1.1.1.1, also known as 1.1).

If he adds the line
printf ("between hello and goodbye\n");
to hello.c and commit it, the file’s revision number will be incremented once more:

paste$ cvs ci -m "added new middle line"

cvs commit: Examining .

cvs commit: Examining a-subdir

cvs commit: Examining a-subdir/subsubdir

cvs commit: Examining b-subdir

Checking in hello.c;
/usr/local/cvs/myproj/hello.c,v <-- hello.c
new revision: 1.3; previous revision: 1.2
done

paste$

Now hello.c is revision 1.3, fish.c and random.c still are revision 1.2, and every other file
is revision 1.1.

Note: that the command was given as cvs ci instead of cvs commit. Most CVS commands
have short forms, to make typing easier. For checkout, update, and commit, the abbreviated
versions are co, up, and ci, respectively. You can get a list of all of the short forms by running
the command cvs --help-synonyms.

You can usually ignore a file’s revision number. In most situations, the numbers are
just internal bookkeeping that CVS handles automatically. However, being able to find and
compare revision numbers is extremely handy when you have to retrieve (or diff against)
an earlier copy of a file.

Open Source Development With CVS

Examining the Entries file isn’t the only way to discover a revision number. You can
also use the status command

paste$ cvs status hello.c

File: hello.c Status: Up-to-date
Working revision: 1.3 Tue Apr 20 02:34:42 1999
Repository revision: 1.3 /usr/local/cvs/myproj/hello.c,v
Sticky Tag: (none)
Sticky Date: (none)
Sticky Options: (none)

which, if invoked without any files being named, shows the status of every file in the
project:

paste$ cvs status
cvs status: Examining.

File: README.txt Status: Up-to-date
Working revision: 1.1.1.1 Sun Apr 18 18:18:22 1999
Repository revision: 1.1.1.1 /usr/local/cvs/myproj/README.txt,v
Sticky Tag: (none)
Sticky Date: (none)
Sticky Options: (none)

File: hello.c Status: Up-to-date
Working revision: 1.3 Tue Apr 20 02:34:42 1999
Repository revision: 1.3 /usr/local/cvs/myproj/hello.c,v
Sticky Tag: (none)
Sticky Date: (none)
Sticky Options: (none)

cvs status: Examining a-subdir

File: whatever.c Status: Up-to-date
Working revision: 1.1.1.1 Sun Apr 18 18:18:22 1999
Repository revision: 1.1.1.1 /usr/local/cvs/myproj/a-subdir/whatever.c,v
Sticky Tag: (none)
Sticky Date: (none)
Sticky Options: (none)

cvs status: Examining a-subdir/subsubdir

File: fish.c Status: Up-to-date

Working revision: 1.2 Mon Apr 19 06:35:27 1999

An Overview of CVS

Repository revision: 1.2 /usr/local/cvs/myproj/
a-subdir/subsubdir/fish.c,v

Sticky Tag: (none)

Sticky Date: (none)

Sticky Options: (none)

cvs status: Examining b-subdir

File: random.c Status: Up-to-date
Working revision: 1.2 Mon Apr 19 06:35:27 1999
Repository revision: 1.2 /usr/local/cvs/myproj/b-subdir/random.c,v
Sticky Tag: (none)
Sticky Date: (none)
Sticky Options: (none)
paste$

Just ignore the parts of that output that you don’t understand. In fact, that’s generally
good advice with CVS. Often, the one little bit of information you’re looking for will be
accompanied by reams of information that you don’t care about at all, and maybe don’t
even understand. This situation is normal. Just pick out what you need, and don’t worry
about the rest.

In the previous example, the parts we care about are the first three lines (not counting
the blank line) of each file’s status output. The first line is the most important; it tells you
the file’s name, and its status in the working copy. All of the files are currently in sync
with the repository, so they all say Up-to-date. However, if random.c has been modified
but not committed, it might read like this:

File: random.c Status: Locally Modified
Working revision: 1.2 Mon Apr 19 06:35:27 1999
Repository revision: 1.2 /usr/local/cvs/myproj/b-subdir/random.c,v
Sticky Tag: (none)
Sticky Date: (none)
Sticky Options: (none)

The Working revision and Repository revision tell you whether the file is out of sync
with the repository. Returning to our original working copy (jrandom’s copy, which hasn’t
seen the new change to hello.c yet), we see:

floss$ cvs status hello.c

File: hello.c Status: Needs Patch
Working revision: 1.2 Mon Apr 19 02:17:07 1999
Repository revision: 1.3 /usr/local/cvs/myproj/hello.c,v
Sticky Tag: (none)
Sticky Date: (none)

Sticky Options: (none)

Open Source Development With CVS

floss$

This tells us that someone has committed a change to hello.c, bringing the repository
copy to revision 1.3, but that this working copy is still on revision 1.2. The line Status:
Needs Patch means that the next update will retrieve those changes from the repository
and "patch" them into the working copy’s file.

Let’s pretend for the moment that we don’t know anything about gsmith’s change to
hello.c, so we don’t run status or update. Instead, we just start editing the file, making a
slightly different change at the same location. This brings us to our first conflict.

Detecting And Resolving Conflicts

Detecting a conflict is easy enough. When you run update, CVS tells you, in no uncertain
terms, that there’s a conflict. But first, let’s create the conflict. We edit hello.c to insert
the line

printf ("this change will conflict\n");
right where gsmith committed this:

printf ("between hello and goodbye\n");
At this point, the status of our copy of hello.c is

floss$ cvs status hello.c

File: hello.c Status: Needs Merge
Working revision: 1.2 Mon Apr 19 02:17:07 1999
Repository revision: 1.3 /usr/local/cvs/myproj/hello.c,v
Sticky Tag: (none)
Sticky Date: (none)
Sticky Options: (none)

floss$

meaning that there are changes both in the repository and the working copy, and these
changes need to be merged. (CVS isn’t aware that the changes will conflict, because we
haven’t run update yet.) When we do the update, we see this:

floss$ cvs update hello.c

RCS file: /usr/local/cvs/myproj/hello.c,v
retrieving revision 1.2

retrieving revision 1.3

Merging differences between 1.2 and 1.3 into hello.c
rcsmerge: warning: conflicts during merge

cvs update: conflicts found in hello.c

C hello.c

floss$

The last line of output is the giveaway. The C in the left margin next to the filename
indicates that changes have been merged, but that they conflict. The contents of hello.c
now shows both changes:

An Overview of CVS

#include <stdio.h>

void
main ()
{
printf ("Hello, world!\n");
<<<<<<< hello.c
printf ("this change will conflict\n");

printf ("between hello and goodbye\n");
>>>>>>> 1.3

printf ("Goodbye, world!\n");
}

Conflicts are always shown delimited by conflict markers, in the following format:
<<<<<<< (filename)

the uncommitted changes in the working copy
blah blah blah

the new changes that came from the repository
blah blah blah
and so on

>>>>>>> (latest revision number in the repository)

The Entries file also shows that the file is in a halfway state at the moment:

floss$ cat CVS/Entries

/README.txt/1.1.1.1/Sun Apr 18 18:18:22 1999//
D/a-subdir////

D/b-subdir////

/hello.c/1.3/Result of merge+Tue Apr 20 03:59:09 1999//
floss$

The way to resolve the conflict is to edit the file so that it contains whatever text
is appropriate, removing the conflict markers in the process, and then to commit. This
doesn’t necessarily mean choosing one change over another; you could decide neither change
is sufficient and rewrite the conflicting section (or indeed the whole file) completely. In this
case, we'll adjust in favor of the first change, but with capitalization and punctuation slightly
different from gsmith’s:

floss$ emacs hello.c
(make the edits...)

floss$ cat hello.c

#include <stdio.h>

void

main ()

{
printf ("Hello, world!\n");
printf ("BETWEEN HELLO AND GOODBYE.\n");
printf ("Goodbye, world!\n");

}

floss$ cvs ci -m "adjusted middle line"

Open Source Development With CVS

cvs commit: Examining .

cvs commit: Examining a-subdir

cvs commit: Examining a-subdir/subsubdir

cvs commit: Examining b-subdir

Checking in hello.c;
/usr/local/cvs/myproj/hello.c,v <- hello.c
new revision: 1.4; previous revision: 1.3
done

floss$

Finding Out Who Did What (Browsing Log Messages)

By now, the project has undergone several changes. If you're trying to get an overview
of what has happened so far, you don’t necessarily want to examine every diff in detail.
Browsing the log messages would be ideal, and you can accomplish this with the log com-
mand:

floss$ cvs log
(pages upon pages of output omitted)

The log output tends to be a bit verbose. Let’s look at the log messages for just one file:

floss$ cvs log hello.c
RCS file: /usr/local/cvs/myproj/hello.c,v
Working file: hello.c
head: 1.4
branch:
locks: strict
access list:
symbolic names:
start: 1.1.1.1
jrandom: 1.1.1
keyword substitution: kv
total revisions: 5; selected revisions: 5
description:
revision 1.4
date: 1999/04/20 04:14:37; author: jrandom; state: Exp; lines: +1 -1
adjusted middle line
revision 1.3
date: 1999/04/20 02:30:05; author: gsmith; state: Exp; lines: +1 -0
added new middle line
revision 1.2
date: 1999/04/19 06:35:15; author: jrandom; state: Exp; lines: +1 -0
print goodbye too
revision 1.1
date: 1999/04/18 18:18:22; author: jrandom; state: Exp;
branches: 1.1.1;

An Overview of CVS

Initial revision

revision 1.1.1.1
date: 1999/04/18 18:18:22; author: jrandom; state: Exp; lines: +0 -0
initial import into CVS

floss$

As usual, there’s a lot of information at the top that you can just ignore. The good stuff
comes after each line of dashes, in a format that is self-explanatory.

When many files are sent in the same commit, they all share the same log message; a fact
that can be useful in tracing changes. For example, remember back when we committed
fish.c and random.c simultaneously? It was done like this:

floss$ cvs commit -m "filled out C code"

Checking in a-subdir/subsubdir/fish.c;
/usr/local/cvs/myproj/a-subdir/subsubdir/fish.c,v <- fish.c
new revision: 1.2; previous revision: 1.1

done

Checking in b-subdir/random.c;
/usr/local/cvs/myproj/b-subdir/random.c,v <- random.c

new revision: 1.2; previous revision: 1.1

done

floss$

The effect of this was to commit both files with the same log message: "Filled out C
code." (As it happened, both files started at revision 1.1 and went to 1.2, but that’s just a
coincidence. If random.c had been at revision 1.29, it would have moved to 1.30 with this
commit, and its revision 1.30 would have had the same log message as fish.c’s revision 1.2.)

When you run cvs log on them, you'll see the shared message:

floss$ cvs log a-subdir/subsubdir/fish.c b-subdir/random.c

RCS file: /usr/local/cvs/myproj/a-subdir/subsubdir/fish.c,v
Working file: a-subdir/subsubdir/fish.c
head: 1.2
branch:
locks: strict
access list:
symbolic names:
start: 1.1.1.1
jrandom: 1.1.1
keyword substitution: kv
total revisions: 3; selected revisions: 3
description:
revision 1.2
date: 1999/04/19 06:35:27; author: jrandom; state: Exp; lines: +8 -1
filled out C code

revision 1.1

Open Source Development With CVS

date: 1999/04/18 18:18:22; author: jrandom; state: Exp;

branches: 1.1.1;

Initial revision

revision 1.1.1.1

date: 1999/04/18 18:18:22; author: jrandom; state: Exp; lines: +0 -0
initial import into CVS

RCS file: /usr/local/cvs/myproj/b-subdir/random.c,v
Working file: b-subdir/random.c
head: 1.2
branch:
locks: strict
access list:
symbolic names:
start: 1.1.1.1
jrandom: 1.1.1
keyword substitution: kv
total revisions: 3; selected revisions: 3
description:
revision 1.2
date: 1999/04/19 06:35:27; author: jrandom; state: Exp; lines: +8 -1
filled out C code
revision 1.1
date: 1999/04/18 18:18:22; author: jrandom; state: Exp;
branches: 1.1.1;
Initial revision
revision 1.1.1.1
date: 1999/04/18 18:18:22; author: jrandom; state: Exp; lines: +0 -0
initial import into CVS

floss$

From this output, you’ll know that the two revisions were part of the same commit
(the fact that the timestamps on the two revisions are the same, or very close, is further
evidence).

Browsing log messages is a good way to get a quick overview of what’s been going on in a
project or to find out what happened to a specific file at a certain time. There are also free
tools available to convert raw cvs log output to more concise and readable formats (such as
GNU ChangeLog style); we won’t cover those tools in this tour, but they’ll be introduced
in [Third-Party Tools|, page 197.

Examining And Reverting Changes

Suppose that, in the course of browsing the logs, gsmith sees that jrandom made the
most recent change to hello.c:

An Overview of CVS

revision 1.4
date: 1999/04/20 04:14:37; author: jrandom; state: Exp; lines: +1 -1
adjusted middle line

and wonders what jrandom did? In formal terms, the question that gsmith is asking is,
"What’s the difference between my revision (1.3) of hello.c, and jrandom’s revision right
after it (1.4)?" The way to find out is with the diff command, but this time by comparing
two past revisions using the -r command option to specify both of them:

paste$ cvs diff -¢ -r 1.3 -r 1.4 hello.c
Index: hello.c

RCS file: /usr/local/cvs/myproj/hello.c,v
retrieving revision 1.3

retrieving revision 1.4

diff -c -r1.3 -r1.4

*** hello.c 1999/04/20 02:30:05 1.3
--- hello.c 1999/04/20 04:14:37 1.4
ok ok ok ok ok ok ok ok ok ok ok ok o ok
*okk 4,9 Kokkk

main ()

{

printf ("Hello, world!\n");
! printf ("between hello and goodbye\n");
printf ("Goodbye, world!\n");

}
—_— 4’9 —_
main ()
{
printf ("Hello, world!\n");
! printf ("BETWEEN HELLO AND GOODBYE.\n");
printf ("Goodbye, world!\n");
}
paste$

The change is pretty clear, when viewed this way. Because the revision numbers are
given in chronological order (usually a good idea), the diff shows them in order. If only one
revision number is given, CVS uses the revision of the current working copy for the other.

When gsmith sees this change, he instantly decides he likes his way better and resolves
to "undo"-that is, to step back by one revision.

However, this doesn’t mean that he wants to lose his revision 1.4. Although, in an
absolute technical sense, it’s probably possible to achieve that effect in CVS, there’s almost
never any reason to do so. It’s much preferable to keep revision 1.4 in the history and make
a new revision 1.5 that looks exactly like 1.3. That way the undo event itself is part of the
file’s history.

The only question is, how can you retrieve the contents of revision 1.3 and put them
into 1.57

In this particular case, because the change is a very simple one, gsmith can probably just
edit the file by hand to mirror revision 1.3 and then commit. However, if the changes are
more complex (as they usually are in a real-life project), trying to re-create the old revision

Open Source Development With CVS

manually will be hopelessly error-prone. Therefore, we’ll have gsmith use CVS to retrieve
and recommit the older revision’s contents.

There are two equally good ways to do this: the slow, plodding way and the fast, fancy
way. We’ll examine the slow, plodding way first.

The Slow Method Of Reverting

This method involves passing the -p flag to update, in conjunction with -r. The -p option
sends the contents of the named revision to standard output. By itself, this isn’t terribly
helpful; the contents of the file fly by on the display, leaving the working copy unchanged.
However, by redirecting the standard output into the file, the file will now hold the contents
of the older revision. It’s just as though the file had been hand-edited into that state.

First, though, gsmith needs to get up to date with respect to the repository:

paste$ cvs update

cvs update: Updating .

U hello.c

cvs update: Updating a-subdir

cvs update: Updating a-subdir/subsubdir
cvs update: Updating b-subdir

paste$ cat hello.c

#include <stdio.h>

void

main ()

{
printf ("Hello, world!\n");
printf ("BETWEEN HELLO AND GOODBYE.\n");
printf ("Goodbye, world!\n");

}

paste$

Next, he runs update -p to make sure that the revision 1.3 is the one he wants:

paste$ cvs update -p -r 1.3 hello.c

Checking out hello.c

RCS: /usr/local/cvs/myproj/hello.c,v
VERS: 1.3

sk ok ko o sk ok o sk ok o sk ok ok

#include <stdio.h>

void

main ()

{
printf ("Hello, world!\n");
printf ("between hello and goodbye\n");
printf ("Goodbye, world!\n");

}

An Overview of CVS

Oops, there are a few lines of cruft at the beginning. They aren’t actually being sent
to standard output, but rather to standard error, so they’re harmless. Nevertheless, they
make reading the output more difficult and can be suppressed with -Q:

paste$ cvs -Q update -p -r 1.3 hello.c
#include <stdio.h>

void

main ()

{
printf ("Hello, world!\n");
printf ("between hello and goodbye\n");
printf ("Goodbye, world!\n");

}

paste$

There — that’s exactly what gsmith was hoping to retrieve. The next step is to put that
content into the working copy’s file, using a Unix redirect (that’s what the ">" does):
paste$ cvs -Q update -p -r 1.3 hello.c > hello.c
paste$ cvs update
cvs update: Updating .
M hello.c
cvs update: Updating a-subdir
cvs update: Updating a-subdir/subsubdir
cvs update: Updating b-subdir
paste$
Now when update is run, the file is listed as modified, which makes sense because its
contents have changed. Specifically, it has the same content as the old revision 1.3 (not
that CVS is aware of its being identical to a previous revision — it just knows the file has
been modified). If gsmith wants to make extra sure, he can do a diff to check:
paste$ cvs -Q diff -c
Index: hello.c

RCS file: /usr/local/cvs/myproj/hello.c,v
retrieving revision 1.4
diff -c¢c -r1.4 hello.c

**x hello.c 1999/04/20 04:14:37 1.4
--- hello.c 1999/04/20 06:02:25
Aotk ok ok ok ok ok ok ok
*kk 4,9 Kokkk

main ()

{

printf ("Hello, world!\n");
! printf ("BETWEEN HELLO AND GOODBYE.\n");
printf ("Goodbye, world!\n");

printf ("Hello, world!\n");

Open Source Development With CVS

! printf ("between hello and goodbye\n");
printf ("Goodbye, world!\n");
}
paste$

Yes, that’s exactly what he wanted: a pure reversion — in fact, it is the reverse of the
diff he previously obtained. Satisfied, he commits:

paste$ cvs ci -m "reverted to 1.3 code"

cvs commit: Examining .

cvs commit: Examining a-subdir

cvs commit: Examining a-subdir/subsubdir

cvs commit: Examining b-subdir

Checking in hello.c;
/usr/local/cvs/myproj/hello.c,v <- hello.c
new revision: 1.5; previous revision: 1.4
done

paste$

The Fast Method Of Reverting

The fast, fancy way of reverting is to use the -j (for "join") flag to the update command.
This flag is like -r in that it takes a revision number, and you can use up to two -j’s at once.
CVS calculates the difference between the two named revisions and applies that difference
as a patch to the file in question (so the order in which you give the revisions is important).

Thus, assuming gsmith’s copy is up to date, he can just do this:

paste$ cvs update -j 1.4 -j 1.3 hello.c

RCS file: /usr/local/cvs/myproj/hello.c,v
retrieving revision 1.4

retrieving revision 1.3

Merging differences between 1.4 and 1.3 into hello.c

paste$ cvs

cvs update:

M hello.c

cvs update:
cvs update:
cvs update:

paste$ cvs

update
Updating .

Updating a-subdir

Updating a-subdir/subsubdir
Updating b-subdir

ci -m "reverted to 1.3 code" hello.c

Checking in hello.c;

/usr/local/cvs/myproj/hello.c,v <--—

hello.c

new revision: 1.5; previous revision: 1.4

done
paste$

When you only need to revert one file, there’s not really much difference between the
plodding and fast methods. Later in the book, you’ll see how the fast method is much
better for reverting multiple files at once. In the meantime, use whichever way you’re more
comfortable with.

An Overview of CVS

Reverting Is Not A Substitute For Communication

In all likelihood, what gsmith did in our example was quite rude. When you’re working
on a real project with other people and you think that someone has committed a bad change,
the first thing you should do is talk to him or her about it. Maybe there’s a good reason
for the change, or maybe he or she just didn’t think things through. Either way, there’s no
reason to rush and revert. A full record of everything that happens is stored permanently
in CVS, so you can always revert to a previous revision after consulting with whoever made
the changes.

If you're a project maintainer facing a deadline or you feel you have the right and the
need to revert the change unconditionally, then do so — but follow it immediately with an
email to the author whose change was reverted, explaining why you did it and what needs
to be fixed to recommit the change.

Other Useful CVS Commands

At this point, you should be pretty comfortable with basic CVS usage. I’ll abandon the
tour narrative and introduce a few more useful commands in summarized form.

Adding Files

Adding a file is a two-step process: First you run the add command on it, then commit.
The file won’t actually appear in the repository until commit is run:

floss$ cvs add newfile.c

cvs add: scheduling file ’newfile.c’ for addition
cvs add: use ’cvs commit’ to add this file permanently
floss$ cvs ci -m "added newfile.c" newfile.c

RCS file: /usr/local/cvs/myproj/newfile.c,v

done

Checking in newfile.c;
/usr/local/cvs/myproj/newfile.c,v <- newfile.c
initial revision: 1.1

done

floss$

Adding Directories

Unlike adding a file, adding a new directory is done in one step; there’s no need to do a
commit afterwards:
floss$ mkdir c-subdir
floss$ cvs add c-subdir
Directory /usr/local/cvs/myproj/c-subdir added to the repository
floss$

If you look inside the new directory in the working copy, you'll see that a CVS subdi-
rectory was created automatically by add:

floss$ 1ls c-subdir
cvs/

Open Source Development With CVS

floss$ 1s c-subdir/CVS
Entries Repository Root
floss$

Now you can add files (or new directories) inside it, as with any other working copy
directory.

CVS And Binary Files

Until now, I've left unsaid the dirty little secret of CVS, which is that it doesn’t handle
binary files very well (well, there are other dirty little secrets, but this definitely counts as
one of the dirtiest). It’s not that CVS doesn’t handle binaries at all; it does, just not with
any great panache.

All the files we’ve been working with until now have been plain text files. CVS has some
special tricks for text files. For example, when it’s working between a Unix repository and
a Windows or Macintosh working copy, it converts file line endings appropriately for each
platform. For example, Unix convention is to use a linefeed (LF) only, whereas Windows
expects a carriage return/linefeed (CRLF) sequence at the end of each line. Thus, the files
in a working copy on a Windows machine will have CRLF endings, but a working copy of
the same project on a Unix machine will have LF endings (the repository itself is always
stored in LF format).

Another trick is that CVS detects special strings, known as RCS keyword strings, in text
files and replaces them with revision information and other useful things. For example, if
your file contains this string

$Revision$

CVS will expand on each commit to include the revision number. For example, it may
get expanded to

$Revision: 1.3 $

CVS will keep that string up to date as the file is developed. (The various keyword
strings are documented in [Advanced CVS], page 95 and [Third-Party Tools], page 197.)

This string expansion is a very useful feature in text files, as it allows you to see the
revision number or other information about a file while you’re editing it. But what if the
file is a JPG image? Or a compiled executable program? In those kinds of files, CVS
could do some serious damage if it blundered around expanding any keyword string that it
encountered. In a binary, such strings may even appear by coincidence.

Therefore, when you add a binary file, you have to tell CVS to turn off both keyword
expansion and line-ending conversion. To do so, use -kb:

floss$ cvs add -kb filename
floss$ cvs ci -m "added blah" filename
(etc)

Also, in some cases (such as text files that are likely to contain spurious keyword strings),
you may wish to disable just the keyword expansion. That’s done with -ko:

floss$ cvs add -ko filename
floss$ cvs ci -m "added blah" filename
(etc)

An Overview of CVS

(In fact, this chapter is one such document, because of the $Revision$ example shown
here.)

Note that you can’t meaningfully run cvs diff on two revisions of a binary file. Diff
uses a text-based algorithm that can only report whether two binary files differ, but not
how they differ. Future versions of CVS may provide a way to diff binary files.

Removing Files

Removing a file is similar to adding one, except there’s an extra step: You have to remove

the file from the working copy first:

floss$ rm newfile.c

floss$ cvs remove newfile.c

cvs remove: scheduling ’newfile.c’ for removal

cvs remove: use ’cvs commit’ to remove this file permanently

floss$ cvs ci -m "removed newfile.c" newfile.c

Removing newfile.c;

/usr/local/cvs/myproj/newfile.c,v <- mnewfile.c

new revision: delete; previous revision: 1.1

done

floss$

Notice how, in the second and third commands, we name newfile.c explicitly even though
it doesn’t exist in the working copy anymore. Of course, in the commit, you don’t absolutely
need to name the file, as long as you don’t mind the commit encompassing any other
modifications that may have taken place in the working copy.

Removing Directories

As T said before, CVS doesn’t really keep directories under version control. Instead, as
a kind of cheap substitute, it offers certain odd behaviors that in most cases do the "right
thing". Omne of these odd behaviors is that empty directories can be treated specially. If
you want to remove a directory from a project, you first remove all the files in it

floss$ cd dir

floss$ rm filel file2 file3

floss$ cvs remove filel file2 file3
(output omitted)

floss$ cvs ci -m "removed all files" filel file2 file3
(output omitted)

and then run update in the directory above it with the -P flag:

floss$ cd ..
floss$ cvs update -P
(output omitted)

The -P option tells update to "prune" any empty directories — that is, to remove them
from the working copy. Once that’s done, the directory can be said to have been removed;
all of its files are gone, and the directory itself is gone (from the working copy, at least,
although there is actually still an empty directory in the repository).

An interesting counterpart to this behavior is that when you run a plain update, CVS
does not automatically bring new directories from the repository into your working copy.

Open Source Development With CVS

There are a couple of different justifications for this, none really worth going into here. The
short answer is that from time to time you should run update with the -d flag, telling it to
bring down any new directories from the repository.

Renaming Files And Directories

Renaming a file is equivalent to creating it under the new name and removing it under
the old. In Unix, the commands are:

floss$ cp oldname newname
floss$ rm oldname

Here’s the equivalent in CVS:

floss$ mv oldname newname

floss$ cvs remove oldname
(output omitted)

floss$ cvs add newname
(output omitted)

floss$ cvs ci -m "renamed oldname to newname" oldname newname
(output omitted)

floss$

For files, that’s all there is to it. Renaming directories is not done very differently: create
the new directory, cvs add it, move all the files from the old directory to the new one, cvs
remove them from the old directory, cvs add them in the new one, cvs commit so everything
takes effect, and then do cvs update -P to make the now-empty directory disappear from
the working copy. That is to say:

floss$ mkdir newdir

floss$ cvs add newdir

floss$ mv olddir/* newdir

mv: newdir/CVS: cannot overwrite directory
floss$ cd olddir

floss$ cvs rm foo.c bar.txt

floss$ cd ../newdir

floss$ cvs add foo.c bar.txt

floss$ cd ..

floss$ cvs commit -m "moved foo.c and bar.txt from olddir to newdir"
floss$ cvs update -P

Note: the warning message after the third command. It’s telling you that it can’t copy
olddir’s CVS/ subdirectory into newdir because newdir already has a directory of that name.
This is fine, because you want olddir to keep its CVS/ subdirectory anyway.

Obviously, moving directories around can get a bit cumbersome. The best policy is to
try to come up with a good layout when you initially import your project so you won’t have
to move directories around very often. Later, you’ll learn about a more drastic method of
moving directories that involves making the change directly in the repository. However,
that method is best saved for emergencies; whenever possible, it’s best to handle everything
with CVS operations inside working copies.

An Overview of CVS

Avoiding Option Fatigue

Most people tire pretty quickly of typing the same option flags with every command. If
you know that you always want to pass the -Q global option or you always want to use -c
with diff, why should you have to type it out each time?

There is help, fortunately. CVS looks for a .cvsrc file in your home directory. In that
file, you can specify default options to apply to every invocation of CVS. Here’s an example
.cvsrce:

diff -c
update -P
cvs —-q

If the leftmost word on a line matches a CVS command (in its unabbreviated form), the
corresponding options are used for that command every time. For global options, you just
use cvs. So, for example, every time that user runs cvs diff, the -c flag is automatically
included.

Getting Snapshots (Dates And Tagging)

Let’s return to the example of the program that’s in a broken state when a bug report
comes in. The developer suddenly needs access to the entire project as it was at the time of
the last release, even though many files may have been changed since then, and each file’s
revision number differs from the others. It would be far too time-consuming to look over
the log messages, figure out what each file’s individual revision number was at the time of
release, and then run update (specifying a revision number with -r) on each one of them.
In medium- to large-sized projects (tens to hundreds of files), such a process would be too
unwieldy to attempt.

CVS, therefore, provides a way to retrieve previous revisions of the files in a project en
masse. In fact, it provides two ways: by date, which selects the revisions based on the time
that they were committed, and by tag, which retrieves a previously marked "snapshot" of
the project.

Which method you use depends on the situation. The date-based retrievals are done
by passing update the -D flag, which is similar to -r but takes dates instead of revision
numbers:

floss$ cvs -q update -D "1999-04-19"
U hello.c

U a-subdir/subsubdir/fish.c

U b-subdir/random.c

floss$

With the -D option, update retrieves the highest revision of each file as of the given date,
and it will revert the files in the working copy to prior revisions if necessary.

When you give the date, you can, and often should, include the time. For example, the
previous command ended up retrieving revision 1.1 of everything (only three files showed
changes, because all of the others are still at revision 1.1 anyway). Here’s the status of
hello.c to prove it:

floss$ cvs -Q status hello.c

Open Source Development With CVS

File: hello.c Status: Up-to-date
Working revision: 1.1.1.1 Sat Apr 24 22:45:03 1999
Repository revision: 1.1.1.1 /usr/local/cvs/myproj/hello.c,v
Sticky Date: 99.04.19.05.00.00

floss$

But a glance back at the log messages from earlier in this chapter shows that revision
1.2 of hello.c was definitely committed on April 19, 1999. So why did we now get revision
1.1 instead of 1.27

The problem is that the date "1999-04-19" was interpreted as meaning "the midnight
that begins 1999-04-19" — that is, the very first instant on that date. This is probably not
what you want. The 1.2 commit took place later in the day. By qualifying the date more
precisely, we can retrieve revision 1.2:

floss$ cvs -q update -D "1999-04-19 23:59:59"
U hello.c

U a-subdir/subsubdir/fish.c

U b-subdir/random.c

floss$ cvs status hello.c

File: hello.c Status: Locally Modified
Working revision: 1.2 Sat Apr 24 22:45:22 1999
Repository revision: 1.2 /usr/local/cvs/myproj/hello.c,v
Sticky Tag: (none)
Sticky Date: 99.04.20.04.59.59
Sticky Options: (none)
floss$

We’re almost there. If you look closely at the date/time on the Sticky Date line, it seems
to indicate 4:59:59 A.M., not 11:59 as the command requested (later we’ll get to what the
"sticky" means). As you may have guessed, the discrepancy is due to the difference between
local time and Universal Coordinated Time (also known as "Greenwich mean time"). The
repository always stores dates in Universal Time, but CVS on the client side usually assumes
the local system time zone. In the case of -D, this is rather unfortunate because you're
probably most interested in comparing against the repository time and don’t care about
the local system’s idea of time. You can get around this by specifying the GMT zone in the
command:

floss$ cvs -q update -D "1999-04-19 23:59:59 GMT"
U hello.c
floss$ cvs -q status hello.c

File: hello.c Status: Up-to-date
Working revision: 1.2 Sun Apr 25 22:38:53 1999
Repository revision: 1.2 /usr/local/cvs/myproj/hello.c,v
Sticky Tag: (none)
Sticky Date: 99.04.19.23.59.59
Sticky Options: (none)
floss$

There — that brought the working copy back to the final commits from April 19 (unless
there were any commits during the last second of the day, which there weren’t).

An Overview of CVS

What happens now if you run update?

floss$ cvs update

cvs update: Updating .

cvs update: Updating a-subdir

cvs update: Updating a-subdir/subsubdir
cvs update: Updating b-subdir

floss$

Nothing happens at all. But you know that there are more recent versions of at least
three files. Why aren’t these included in your working copy?

That’s where the "sticky" comes in. Updating ("downdating"?) with the -D flag causes
the working copy to be restricted permanently to that date or before. In CVS terminol-
ogy, the working copy has a "sticky date" set. Once a working copy has acquired a sticky
property, it stays sticky until told otherwise. Therefore, subsequent updates will not auto-
matically retrieve the most recent revision. Instead, they’ll stay restricted to the sticky date.

Stickiness can be revealed by running cvs status or by directly examining the CVS/Entries
file:

floss$ cvs -q update -D "1999-04-19 23:59:59 GMT"

U hello.c

floss$ cat CVS/Entries

D/a-subdir////

D/b-subdir////

D/c-subdir////

/README.txt/1.1.1.1/Sun Apr 18 18:18:22 1999//D99.04.19.23.59.59
/hello.c/1.2/Sun Apr 25 23:07:29 1999//D99.04.19.23.59.59

floss$

If you were to modify hello.c and then try to commit

floss$ cvs update

M hello.c

floss$ cvs ci -m "trying to change the past"

cvs commit: cannot commit with sticky date for file ’hello.c’
cvs [commit aborted]: correct above errors first!

floss$

CVS would not permit the commit to happen because that would be like allowing you
to go back and change the past. CVS is all about record keeping and, therefore, will not
allow you to do that.

This does not mean CVS is unaware of all the revisions that have been committed since
that date, however. You can still compare the sticky-dated working copy against other
revisions, including future ones:

floss$ cvs -q diff -c¢c -r 1.5 hello.c
Index: hello.c

RCS file: /usr/local/cvs/myproj/hello.c,v
retrieving revision 1.5

diff -c -r1.5 hello.c

x¥x hello.c 1999/04/24 22:09:27 1.5
--- hello.c 1999/04/25 00:08:44

Open Source Development With CVS

Kok ke sk ok o sk ok o sk ok ook ok o
*kk 3,0 Kokkk
void
main ()
{
printf ("Hello, world!\n");
- printf ("between hello and goodbye\n") ;
printf ("Goodbye, world!\n");

+ /% this line was added to a downdated working copy */
printf ("Hello, world!\n");
printf ("Goodbye, world!\n");
}

This diff reveals that, as of April 19, 1999, the between hello and goodbye line had not
yet been added. It also shows the modification that we made to the working copy (adding
the comment shown in the preceding code snippet).

You can remove a sticky date (or any sticky property) by updating with the -A flag (-A
stands for "reset", don’t ask me why), which brings the working copy back to the most
recent revisions:

floss$ cvs -q update -A
U hello.c
floss$ cvs status hello.c

File: hello.c Status: Up-to-date
Working revision: 1.5 Sun Apr 25 22:50:27 1999
Repository revision: 1.5 /usr/local/cvs/myproj/hello.c,v
Sticky Tag: (none)
Sticky Date: (none)
Sticky Options: (none)
floss$

Acceptable Date Formats

CVS accepts a wide range of syntaxes to specify dates. You’ll never go wrong if you use
ISO 8601 format (that is, the International Standards Organization standard #8601, see
also www.saggara.demon.co.uk/datefmt.htm), which is the format used in the preceding
examples. You can also use Internet email dates as described in RFC 822 and RFC 1123
(see www.rfc-editor.org/rfc/). Finally, you can use certain unambiguous English constructs
to specify dates relative to the current date.

You will probably never need all of the formats available, but here are some more exam-
ples to give you an idea of what CVS accepts:

floss$ cvs update -D "19 Apr 1999"
floss$ cvs update -D "19 Apr 1999 20:05"

An Overview of CVS

floss$ cvs update -D "19/04/1999"

floss$ cvs update -D "3 days ago"

floss$ cvs update -D "5 years ago"

floss$ cvs update -D "19 Apr 1999 23:59:59 GMT"
floss$ cvs update -D "19 Apr"

The double quotes around the dates are there to ensure that the Unix shell treats the
date as one argument even if it contains spaces. The quotes will do no harm if the date
doesn’t contain spaces, so it’s probably best to always use them.

Marking A Moment In Time (Tags)

Retrieving by date is useful when the mere passage of time is your main concern. But
more often what you really want to do is retrieve the project as it was at the time of a specific
event — perhaps a public release, a known stable point in the software’s development, or the
addition or removal of some major feature.

Trying to remember the date when that event took place or deducing the date from log
messages would be a tedious process. Presumably, the event, because it was important,
was marked as such in the formal revision history. The method CVS offers for making such
marks is known as tagging.

Tags differ from commits in that they don’t record any particular textual change to files,
but rather a change in the developers’ attitude about the files. A tag gives a label to the
collection of revisions represented by one developer’s working copy (usually, that working
copy is completely up to date so the tag name is attached to the "latest and greatest"
revisions in the repository).

Setting a tag is as simple as this:

floss$ cvs —-q tag Release-1999_05_01
T README.txt

T hello.c

T a-subdir/whatever.c

T a-subdir/subsubdir/fish.c

T b-subdir/random.c

floss$

That command associates the symbolic name "Release-1999_05_01" with the snapshot
represented by this working copy. Defined formally, snapshot means a set of files and
associated revision numbers from the project. Those revision numbers do not have to be
the same from file to file and, in fact, usually aren’t. For example, assuming that tag was
done on the same myproj directory that we’ve been using throughout this chapter and that
the working copy was completely up to date, the symbolic name "Release-1999_05_01" will
be attached to hello.c at revision 1.5, to fish.c at revision 1.2, to random.c at revision 1.2,
and to everything else at revision 1.1.

It may help to visualize a tag as a path or string linking various revisions of files in the
project. In Figure 2.1, an imaginary string passes through the tagged revision number of
each file in a project.

File A File B File C File D File E

Open Source Development With CVS

1.1 1.1 1.1 1.1 1.1
----1.2- 1.2 1.2 1.2 1.2
1.3 | 1.3 1.3 1.3 1.3
\ 1.4 -1.4-. 1.4 1.4
\ 1.5 / 1.5 \ 1.5 1.5
\ 1.6 / 1.6 I 1.6 1.6
\ 1.7 / I 1.7 1.7
\ 1.8 / | 1.8 -1.8------- >
\1.9 / I 1.9 / 1.9
‘1.10° I 1.10 / 1.10
1.11 | 1.11 |
I 1.12 I
I 1.13 I
\ 1.14 I
\ 1.15 /
\ 1.16 /
‘-1.17-°

[Figure 2.1: How a tag might stand in relation to files’s revisions.]

But if you pull the string taut and sight directly along it, you’ll see a particular moment
in the project’s history — namely, the moment that the tag was set (Figure 2.2).

File A File B File C File D File E
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.1 1.8
1.2 1.9
1.3 1.10 1.1
1.4 1.11 1.2
1.5 1.12 1.3
1.6 1.13 1.4
1.7 1.1 1.14 1.5
1.8 1.2 1.15 1.6
1.1 1.9 1.3 1.16 1.7
-——1.2-———————- 1.10--————-—- 1.4-———-———- 1.17--—--——-- 1.8———--—- >
1.3 1.11 1.5 1.17 .9
1.6 1.17 1.10

[Figure 2.2: The same tag as a "straight sight" through the revision history.]

An Overview of CVS

As you continue to edit files and commit changes, the tag will not move along with the
increasing revision numbers. It stays fixed, "stickily", at the revision number of each file at
the time the tag was made.

Given their importance as descriptors, it’s a bit unfortunate that log messages can’t be
included with tags or that the tags themselves can’t be full paragraphs of prose. In the
preceding example, the tag is fairly obviously stating that the project was in a releasable
state as of a certain date. However, sometimes you may want to make snapshots of a more
complex state, which can result in ungainly tag names such as:

floss$ cvs tag testing-release-3_pre-19990525-public-release

As a general rule, you should try to keep tags as terse as possible while still including
all necessary information about the event that you’re trying to record. When in doubt, err
on the side of being overly descriptive — you’ll be glad later when you’re able to tell from
some verbose tag name exactly what circumstance was recorded.

You’ve probably noticed that no periods or spaces were used in the tag names. CVS
is rather strict about what constitutes a valid tag name. The rules are that it must start
with a letter and contain letters, digits, hyphens ("-"), and underscores ("_"). No spaces,
periods, colons, commas, or any other symbols may be used.

To retrieve a snapshot by tag name, the tag name is used just like a revision number.
There are two ways to retrieve snapshots: You can check out a new working copy with a
certain tag, or you can switch an existing working copy over to a tag. Both result in a
working copy whose files are at the revisions specified by the tag.

Most of the time, what you’re trying to do is take a look at the project as it was at the
time of the snapshot. You may not necessarily want to do this in your main working copy,
where you presumably have uncommitted changes and other useful states built up, so let’s
assume you just want to check out a separate working copy with the tag. Here’s how (but
make sure to invoke this somewhere other than in your existing working copy or its parent
directory!):

floss$ cvs checkout -r Release-1999_05_01 myproj
cvs checkout: Updating myproj

U myproj/README.txt

U myproj/hello.c

cvs checkout: Updating myproj/a-subdir

U myproj/a-subdir/whatever.c

cvs checkout: Updating myproj/a-subdir/subsubdir
U myproj/a-subdir/subsubdir/fish.c

cvs checkout: Updating myproj/b-subdir

U myproj/b-subdir/random.c

cvs checkout: Updating myproj/c-subdir

We'’ve seen the -r option before in the update command, where it preceded a revision
number. In many ways a tag is just like a revision number because, for any file, a given tag
corresponds to exactly one revision number (it’s illegal, and generally impossible, to have
two tags of the same name in the same project). In fact, anywhere you can use a revision
number as part of a CVS command, you can use a tag name instead (as long as the tag has
been set previously). If you want to diff a file’s current state against its state at the time
of the last release, you can do this:

Open Source Development With CVS

floss$ cvs diff -c -r Release-1999_05_01 hello.c
And if you want to revert it temporarily to that revision, you can do this:
floss$ cvs update -r Release-1999_05_01 hello.c

The interchangeability of tags and revision numbers explains some of the strict rules
about valid tag names. Imagine if periods were legal in tag names; you could have a
tag named "1.3" attached to an actual revision number of "1.47". If you then issued the
command

floss$ cvs update -r 1.3 hello.c

how would CVS know whether you were referring to the tag named "1.3", or the much
earlier revision 1.3 of hello.c? Thus, restrictions are placed on tag names so that they can
always be easily distinguished from revision numbers. A revision number has a period; a
tag name doesn’t. (There are reasons for the other restrictions, too, mostly having to do
with making tag names easy for CVS to parse.)

As you’ve probably guessed by this point, the second method of retrieving a snapshot —
that is, switching an existing working directory over to the tagged revisions-is also done by
updating;:

floss$ cvs update -r Release-1999_05_01
cvs update: Updating .

cvs update: Updating a-subdir

cvs update: Updating a-subdir/subsubdir
cvs update: Updating b-subdir

cvs update: Updating c-subdir

floss$

The preceding command is just like the one we used to revert hello.c to Release-1999_
05_01, except that the filename is omitted because we want to revert the entire project
over. (You can, if you want, revert just one subtree of the project to the tag by invoking
the preceding command in that subtree instead of from the top level, although you hardly
ever would want to do that.)

Note that no files appear to have changed when we updated. The working copy was
completely up to date when we tagged, and no changes had been committed since the
tagging.

However, this does not mean that nothing changed at all. The working copy now knows

that it’s at a tagged revision. When you make a change and try to commit it (let’s assume
we modified hello.c):

floss$ cvs -q update

M hello.c

floss$ cvs -q ci —-m "trying to commit from a working copy on a tag"

cvs commit: sticky tag ’Release-1999_05_01’ for file ’hello.c’ is not a branch
cvs [commit aborted]: correct above errors first!

floss$

CVS does not permit the commit to happen. (Don’t worry about the exact meaning
of that error message yet — we’ll cover branches next in this chapter.) It doesn’t matter
whether the working copy got to be on a tag via a checkout or an update. Once it is on a tag,
CVS views the working copy as a static snapshot of a moment in history, and CVS won’t
let you change history, at least not easily. If you run cvs status or look at the CVS/Entries

An Overview of CVS

files, you’ll see that there is a sticky tag set on each file. Here’s the top level Entries file,
for example:

floss$ cat CVS/Entries

D/a-subdir////

D/b-subdir////

D/c-subdir////

/README.txt/1.1.1.1/Sun Apr 18 18:18:22 1999//TRelease-1999_05_01
/hello.c/1.5/Tue Apr 20 07:24:10 1999//TRelease-1999_05_01

floss$

Tags, like other sticky properties, are removed with the -A flag to update:

floss$ cvs -q update -A
M hello.c
floss$
The modification to hello.c did not go away, however; CVS is still aware that the file
changed with respect to the repository:
floss$ cvs -q diff -c hello.c
Index: hello.c

RCS file: /usr/local/cvs/myproj/hello.c,v
retrieving revision 1.5
diff -c -r1.5 hello.c

*%%x hello.c 1999/04/20 06:12:56 1.5
--- hello.c 1999/05/04 20:09:17

st ok ok ok ok ok ok ok ok ok ok ok ok o ok

*kk 6,9 Kokkk

-— 6,10 —-

printf ("Hello, world!\n");
printf ("between hello and goodbye\n");
printf ("Goodbye, world!\n");
+ /* a comment on the last line */
}
floss$

Now that you’ve reset with update, CVS will accept a commit:

floss$ cvs ci -m "added comment to end of main function"
cvs commit: Examining .

cvs commit: Examining a-subdir

cvs commit: Examining a-subdir/subsubdir

cvs commit: Examining b-subdir

cvs commit: Examining c-subdir

Checking in hello.c;
/usr/local/cvs/myproj/hello.c,v <- hello.c
new revision: 1.6; previous revision: 1.5
done

floss$

The tag Release-1999_05_01 is still attached to revision 1.5, of course. Compare the
file’s status before and after a reversion to the tag:

floss$ cvs —-q status hello.c

Open Source Development With CVS

File: hello.c Status: Up-to-date
Working revision: 1.6 Tue May 4 20:09:17 1999
Repository revision: 1.6 /usr/local/cvs/myproj/hello.c,v
Sticky Tag: (none)
Sticky Date: (none)
Sticky Options: (none)
floss$ cvs -q update -r Release-1999_05_01
U hello.c

floss$ cvs -q status hello.c

File: hello.c Status: Up-to-date
Working revision: 1.5 Tue May 4 20:21:12 1999
Repository revision: 1.5 /usr/local/cvs/myproj/hello.c,v
Sticky Tag: Release-1999_05_01 (revision: 1.5)
Sticky Date: (none)
Sticky Options: (none)

floss$

Now, having just told you that CVS doesn’t let you change history, I’'ll show you how
to change history.

Branches

We’ve been viewing CVS as a kind of intelligent, coordinating library. However, it can
also be thought of as a time machine (thanks to Jim Blandy for the analogy). So far, we've
only seen how you can examine the past with CVS, without affecting anything. Like all
good time machines, CVS also allows you to go back in time to change the past. What do
you get then? Science fiction fans know the answer to that question: an alternate universe,
running parallel to ours, but diverging from ours at exactly the point where the past was
changed. A CVS branch splits a project’s development into separate, parallel histories.
Changes made on one branch do not affect the other.

Branching Basics

Why are branches useful?

Let’s return for a moment to the scenario of the developer who, in the midst of working
on a new version of the program, receives a bug report about an older released version.
Assuming the developer fixes the problem, she still needs a way to deliver the fix to the
customer. It won’t help to just find an old copy of the program somewhere, patch it up
without CVS’s knowledge, and ship it off. There would be no record of what was done;
CVS would be unaware of the fix; and later if something was discovered to be wrong with
the patch, no one would have a starting point for reproducing the problem.

It’s even more ill-advised to fix the bug in the current, unstable version of the sources
and ship that to the customer. Sure, the reported bug may be solved, but the rest of the
code is in a half-implemented, untested state. It may run, but it’s certainly not ready for
prime time.

An Overview of CVS

Because the last released version is thought to be stable, aside from this one bug, the
ideal solution is to go back and correct the bug in the old release — that is, to create an
alternate universe in which the last public release includes this bug fix.

That’s where branches come in. The developer splits off a branch, rooted in the main
line of development (the trunk) not at its most recent revisions, but back at the point of the
last release. Then she checks out a working copy of this branch, makes whatever changes
are necessary to fix the bug, and commits them on that branch, so there’s a record of the
bug fix. Now she can package up an interim release based on the branch and ship it to the
customer.

Her change won’t have affected the code on the trunk, nor would she want it to without
first finding out whether the trunk needs the same bug fix or not. If it does, she can merge
the branch changes into the trunk. In a merge, CVS calculates the changes made on the
branch between the point where it diverged from the trunk and the branch’s tip (its most
recent state), then applies those differences to the project at the tip of the trunk. The
difference between the branch’s root and its tip works out, of course, to be precisely the
bug fix.

Another good way to think of a merge is as a special case of updating. The difference
is that in a merge, the changes to be incorporated are derived by comparing the branch’s
root and tip, instead of by comparing the working copy against the repository.

The act of updating is itself similar to receiving patches directly from their authors and
applying them by hand. In fact, to do an update, CVS calculates the difference (that’s
"difference" as in the diff program) between the working copy and the repository and then
applies that diff to the working copy just as the patch program would. This mirrors the
way in which a developer takes changes from the outside world, by manually applying patch
files sent in by contributors.

Thus, merging the bug fix branch into the trunk is just like accepting some outside
contributor’s patch to fix the bug. The contributor would have made the patch against
the last released version, just as the branch’s changes are against that version. If that area
of code in the current sources hasn’t changed much since the last release, the merge will
succeed with no problems. If the code is now substantially different, however, the merge
will fail with conflict (that is, the patch will be rejected), and some manual fiddling will
be necessary. Usually this is accomplished by reading the conflicting area, making the
necessary changes by hand, and committing. Figure 2.3 shows a picture of what happens
in a branch and merge.

(branch on which bug was fixed)

~
- — — ——.
N
A

______ point of merge)

(main line of development)

Open Source Development With CVS

[Figure 2.3: A branch and then a merge. Time flows left to right.]

We’ll now walk through the steps necessary to make this picture happen. Remember
that it’s not really time that’s flowing from left to right in the diagram, but rather the
revision history. The branch will not have been made at the time of the release, but is
created later, rooted back at the release’s revisions.

In our case, let’s assume the files in the project have gone through many revisions since
they were tagged as Release-1999_05_01, and perhaps files have been added as well. When
the bug report regarding the old release comes in, the first thing we’ll want to do is create
a branch rooted at the old release, which we conveniently tagged Release-1999_05_01.

One way to do this is to first check out a working copy based on that tag, then create

the branch by re-tagging with the -b (branch) option:

floss$ cd ..

floss$ 1s

myproj/

floss$ cvs -q checkout -d myproj_old_release -r Release-1999_05_01 myproj

U myproj_old_release/README.txt

U myproj_old_release/hello.c

U myproj_old_release/a-subdir/whatever.c

U myproj_old_release/a-subdir/subsubdir/fish.c

U myproj_old_release/b-subdir/random.c

floss$ 1s

myproj/ myproj_old_release/

floss$ cd myproj_old_release

floss$ 1s

Ccvs/ README.txt a-subdir/ b-subdir/ hello.c

floss$ cvs -q tag -b Release-1999_05_01-bugfixes

T README.txt

T hello.c

T a-subdir/whatever.c

T a-subdir/subsubdir/fish.c

T b-subdir/random.c

floss$

Take a good look at that last command. It may seem somewhat arbitrary that tag is

used to create branches, but there’s actually a reason for it: The tag name will serve as
a label by which the branch can be retrieved later. Branch tags do not look any different
from non-branch tags, and are subject to the same naming restrictions. Some people like to
always include the word branch in the tag name itself (for example, Release-1999_05_01-
bugfix-branch), so they can distinguish branch tags from other kinds of tags. You may
want to do this if you find yourself often retrieving the wrong tag.

(And while we're at it, note the -d myprojold_release option to checkout in the
first CVS command. This tells checkout to put the working copy in a directory called
myproj_old_release, so we won’t confuse it with the current version in myproj. Be careful
not to confuse this use of -d with the global option of the same name, or with the -d option
to update.)

Of course, merely running the tag command does not switch this working copy over to
the branch. Tagging never affects the working copy; it just records some extra information

An Overview of CVS

in the repository to allow you to retrieve that working copy’s revisions later on (as a static
piece of history or as a branch, as the case may be).

Retrieval can be done one of two ways (you’re probably getting used to this motif by
now!). You can check out a new working copy on the branch
floss$ pwd
/home/whatever
floss$ cvs co -d myproj_branch -r Release-1999_05_01-bugfixes myproj

or switch an existing working copy over to it:

floss$ pwd
/home/whatever/myproj
floss$ cvs update -r Release-1999_05_01-bugfixes

The end result is the same (well, the name of the new working copy’s top-level directory
may be different, but that’s not important for CVS’s purposes). If your current working
copy has uncommitted changes, you’ll probably want to use checkout instead of update to
access the branch. Otherwise, CVS attempts to merge your changes into the working copy
as it switches it over to the branch. In that case, you might get conflicts, and even if you
didn’t, you’d still have an impure branch. It won’t truly reflect the state of the program
as of the designated tag, because some files in the working copy will contain modifications
made by you.

Anyway, let’s assume that by one method or another you get a working copy on the
desired branch:

floss$ cvs —-q status hello.c

File: hello.c Status: Up-to-date
Working revision: 1.5 Tue Apr 20 06:12:56 1999
Repository revision: 1.5 /usr/local/cvs/myproj/hello.c,v
Sticky Tag: Release-1999_05_01-bugfixes
(branch: 1.5.2)
Sticky Date: (none)
Sticky Options: (none)

floss$ cvs -q status b-subdir/random.c

File: random.c Status: Up-to-date
Working revision: 1.2 Mon Apr 19 06:35:27 1999
Repository revision: 1.2 /usr/local/cvs/myproj/b-subdir/random.c,v
Sticky Tag: Release-1999_05_01-bugfixes (branch: 1.2.2)
Sticky Date: (none)
Sticky Options: (none)

floss$

(The contents of those Sticky Tag lines will be explained shortly.) If you modify hello.c
and random.c, and commit

floss$ cvs -q update

M hello.c

M b-subdir/random.c

floss$ cvs ci -m "fixed old punctuation bugs"
cvs commit: Examining .

Open Source Development With CVS

cvs commit: Examining a-subdir

cvs commit: Examining a-subdir/subsubdir

cvs commit: Examining b-subdir

Checking in hello.c;
/usr/local/cvs/myproj/hello.c,v <- hello.c
new revision: 1.5.2.1; previous revision: 1.5
done

Checking in b-subdir/random.c;
/usr/local/cvs/myproj/b-subdir/random.c,v <- random.c
new revision: 1.2.2.1; previous revision: 1.2
done

floss$

you’ll notice that there’s something funny going on with the revision numbers:

floss$ cvs —-q status hello.c b-subdir/random.c

File: hello.c Status: Up-to-date
Working revision: 1.5.2.1 Wed May 5 00:13:58 1999
Repository revision: 1.5.2.1 /usr/local/cvs/myproj/hello.c,v
Sticky Tag: Release-1999_05_01-bugfixes (branch: 1.5.2)
Sticky Date: (none)
Sticky Options: (none)

File: random.c Status: Up-to-date
Working revision: 1.2.2.1 Wed May 5 00:14:25 1999
Repository revision: 1.2.2.1 /usr/local/cvs/myproj/b-subdir/random.c,v
Sticky Tag: Release-1999_05_01-bugfixes (branch: 1.2.2)
Sticky Date: (none)
Sticky Options: (none)

floss$

They now have four digits instead of two!

A closer look reveals that each file’s revision number is just the branch number (as shown
on the Sticky Tag line) plus an extra digit on the end.

What you're seeing is a little bit of CVS’s inner workings. Although you almost always
use a branch to mark a project-wide divergence, CVS actually records the branch on a
per-file basis. This project had five files in it at the point of the branch, so five individual
branches were made, all with the same tag name: Release-1999_05_01-bugfixes.

Most people consider this per-file scheme a rather inelegant implementation on CVS’s
part. It’s a bit of the old RCS legacy showing through-RCS didn’t know how to group files
into projects, and even though CVS does, it still uses code inherited from RCS to handle
branches.

Ordinarily, you don’t need to be too concerned with how CVS is keeping track of things
internally, but in this case, it helps to understand the relationship between branch numbers
and revision numbers. Let’s look at the hello.c file; everything I’'m about to say about hello.c
applies to the other files in the branch (with revision/branch numbers adjusted accordingly).

The hello.c file was on revision 1.5 at the point where the branch was rooted. When
we created the branch, a new number was tacked onto the end to make a branch number

An Overview of CVS

(CVS chooses the first unused even, nonzero integer). Thus, the branch number in this case
became 1.5.2. The branch number by itself is not a revision number, but it is the root
(that is, the prefix) of all the revision numbers for hello.c along this branch.

However, when we ran that first CVS status in a branched working copy, hello.c’s revision
number showed up as only 1.5, not 1.5.2.0 or something similar. This is because the initial
revision on a branch is always the same as the trunk revision of the file, where the branch
sprouts off. Therefore, CVS shows the trunk revision number in status output, for as long
as the file is the same on both branch and trunk.

Once we had committed a new revision, hello.c was no longer the same on both trunk
and branch — the branch incarnation of the file had changed, while the trunk remained the
same. Accordingly, hello.c was assigned its first branch revision number. We saw this in
the status output after the commit, where its revision number is clearly 1.5.2.1.

The same story applies to the random.c file. Its revision number at the time of branching
was 1.2, so its first branch is 1.2.2, and the first new commit of random.c on that branch
received the revision number 1.2.2.1.

There is no numeric relationship between 1.5.2.1 and 1.2.2.1 — no reason to think
that they are part of the same branch event, except that both files are tagged with Release-
1999_05_01-bugfixes, and the tag is attached to branch numbers 1.5.2 and 1.2.2 in the
respective files. Therefore, the tag name is your only handle on the branch as a project-wide
entity. Although it is perfectly possible to move a file to a branch by using the revision
number directly

floss$ cvs update -r 1.5.2.1 hello.c
U hello.c
floss$

it is almost always ill-advised. You would be mixing the branch revision of one file with
non-branch revisions of the others. Who knows what losses may result? It is better to use
the branch tag to refer to the branch and do all files at once by not specifying any particular
file. That way you don’t have to know or care what the actual branch revision number is
for any particular file.

It is also possible to have branches that sprout off other branches, to any level of absur-
dity. For example, if a file has a revision number of 1.5.4.37.2.3, its revision history can
be diagrammed like this:

(1.5.2) (1.5.4) <--— (these are branch numbers)
/ \

Open Source Development With CVS

1.5.2.1 1.5.4.1
| |
1.5.2.2 1.5.4.2
| |
(etc) ... <--- (collapsed 34 revisions for brevity)
|
1.5.4.37
/
/
(1.5.4.37.2) <--- (this is also a branch number)
/
/
1.5.4.37.2.1
I
1.5.4.37.2.2
I
1.5.4.37.2.3

[Figure 2.4: An unusually high degree of branching. Time flows downward.]

Admittedly, only the rarest circumstances make such a branching depth necessary, but
isn’t it nice to know that CVS will go as far as you’re willing to take it? Nested branches are
created the same way as any other branch: Check out a working copy on branch N, run cvs
tag -b branchname in it, and you’ll create branch N.M in the repository (where N represents
the appropriate branch revision number in each file, such as 1.5.2.1, and M represents the
next available branch at the end of that number, such as 2).

Merging Changes From Branch To Trunk

Now that the bug fix has been committed on the branch, let’s switch the working copy
over to the highest trunk revisions and see if the bug fix needs to be done there, too. We’ll
move the working copy off the branch by using update -A (branch tags are like other sticky
properties in this respect) and then diffing against the branch we just left:

floss$ cvs -q update -d -A

U hello.c

U b-subdir/random.c

floss$ cvs -q diff -c -r Release-1999_05_01-bugfixes
Index: hello.c

RCS file: /usr/local/cvs/myproj/hello.c,v
retrieving revision 1.5.2.1
retrieving revision 1.6

diff -c¢ -r1.5.2.1 -r1.6

**x hello.c 1999/05/05 00:15:07
--- hello.c 1999/05/04 20:19:16
sk ok ok sk ook ok ko s ok ok

*kk 4,9 Kkkk
main ()

=
(o) JN¢)]

An Overview of CVS

{
printf ("Hello, world!\n");
! printf ("between hello and good-bye\n");
printf ("Goodbye, world!\n");
}
-—- 4,10 --
main ()
{
printf ("Hello, world!\n");
! printf ("between hello and goodbye\n");
printf ("Goodbye, world!\n");
+ /% a comment on the last line */
}

Index: b-subdir/random.c

RCS file: /usr/local/cvs/myproj/b-subdir/random.c,v
retrieving revision 1.2.2.1
retrieving revision 1.2
diff -¢ -r1.2.2.1 -r1.2
*** b-subdir/random.c 1999/05/05 00:15:07
--- b-subdir/random.c 1999/04/19 06:35:27
sk Kok Kok ok K o K o K o
*kk 48 kkk

void main ()

S
N N

{

! printf ("A random number.\n");
}

—_— 4,8 R
void main ()
{

! printf ("a random number\n");
}

floss$

The diff shows that good-bye is spelled with a hyphen in the branch revision of hello.c,
and that the trunk revision of that file has a comment near the end that the branch revision
doesn’t have. Meanwhile, in random.c, the branch revision has a capital "A" and a period,
whereas the trunk doesn’t.

To actually merge the branch changes into the current working copy, run update with
the -j flag (the same j for "join" that we used to revert a file to an old revision before):

floss$ cvs —-q update -d -j Release-1999_05_01-bugfixes
RCS file: /usr/local/cvs/myproj/hello.c,v

retrieving revision 1.5

retrieving revision 1.5.2.1

Merging differences between 1.5 and 1.5.2.1 into hello.c
RCS file: /usr/local/cvs/myproj/b-subdir/random.c,v
retrieving revision 1.2

retrieving revision 1.2.2.1

Merging differences between 1.2 and 1.2.2.1 into random.c

Open Source Development With CVS

floss$ cvs -q update

M hello.c

M b-subdir/random.c

floss$ cvs -q ci —m "merged from branch Release-1999_05_01-bugfixes"
Checking in hello.c;

/usr/local/cvs/myproj/hello.c,v <- hello.c

new revision: 1.7; previous revision: 1.6

done

Checking in b-subdir/random.c;
/usr/local/cvs/myproj/b-subdir/random.c,v <- random.c
new revision: 1.3; previous revision: 1.2

done

floss$

This takes the changes from the branch’s root to its tip and merges them into the current
working copy (which subsequently shows those modifications just as though the files had
been hand-edited into that state). The changes are then committed onto the trunk, since
nothing in the repository changed when a working copy underwent a merge.

Although no conflicts were encountered in this example, it’s quite possible (even proba-
ble) that there would be some in a normal merge. If that happens, they need to be resolved
like any other conflict, and then committed.

Multiple Merges

Sometimes a branch will continue to be actively developed even after the trunk has
undergone a merge from it. For example, this can happen if a second bug in the previous
public release is discovered and has to be fixed on the branch. Maybe someone didn’t get
the joke in random.c, so on the branch, you have to add a line explaining it

floss$ pwd
/home/whatever/myproj_branch
floss$ cat b-subdir/random.c

/* Print out a random number. */
#include <stdio.h>

void main ()

{
printf ("A random number.\n");
printf ("Get the joke?\n");

}

floss$

and commit. If that bug fix also needs to be merged into the trunk, you might be tempted
to try the same update command as before in the trunk working copy to "re-merge":

floss$ cvs -q update -d -j Release-1999_05_01-bugfixes
RCS file: /usr/local/cvs/myproj/hello.c,v

retrieving revision 1.5

retrieving revision 1.5.2.1

Merging differences between 1.5 and 1.5.2.1 into hello.c
RCS file: /usr/local/cvs/myproj/b-subdir/random.c,v
retrieving revision 1.2

retrieving revision 1.2.2.2

An Overview of CVS

Merging differences between 1.2 and 1.2.2.2 into random.c
rcsmerge: warning: conflicts during merge
floss$
As you can see, that didn’t have quite the desired effect-we got a conflict, even though
the trunk copy hadn’t been modified there and, therefore, no conflict was expected.

The trouble was that the update command behaved exactly as described: It tried to
take all the changes between the branch’s root and tip and merge them into the current
working copy. The only problem is, some of those changes had already been merged into
this working copy. That’s why we got the conflict:

floss$ pwd

/home/whatever/myproj

floss$ cat b-subdir/random.c

/* Print out a random number. */
#include <stdio.h

void main ()

{

<<<<<<< random.c
printf ("A random number.\n");

printf ("A random number.\n");
printf ("Get the joke?\n");
>O55>>> 1.2.2.2
}
floss$

You could go through resolving all such conflicts by hand-it’s usually not hard to tell
what you need to do in each file. Nevertheless, it is even better to avoid a conflict in the
first place. By passing two -j flags instead of one, you’ll get only those changes from where
you last merged to the tip instead of all of the changes on the branch, from root to tip. The
first -j gives the starting point on the branch, and the second is just the plain branch name
(which implies the tip of the branch).

The question then is, how can you specify the point on the branch from which you last
merged? One way is to qualify by using a date along with the branch tag name. CVS
provides a special syntax for this:

floss$ cvs -q update -d -j "Release-1999_05_01-bugfixes:2 days ago" \
-j Release-1999_05_01-bugfixes

RCS file: /usr/local/cvs/myproj/b-subdir/random.c,v

retrieving revision 1.2.2.1

retrieving revision 1.2.2.2

Merging differences between 1.2.2.1 and 1.2.2.2 into random.c

floss$

If the branch tag name is followed by a colon and then a date (in any of the usual CVS
date syntaxes), CVS will include only changes later than that date. So if you knew that
the original bug fix was committed on the branch three days ago, the preceding command
would merge the second bug fix only.

A better way, if you plan ahead, is to tag the branch after each bug fix (just a regular
tag — we’re not starting a new branch here or anything like that). Suppose after fixing the
bug in the branch and committing, you do this in the branch’s working copy:

Open Source Development With CVS

floss$ cvs -q tag Release-1999_05_01-bugfixes-fix-number-1
T README.txt

T hello.c

T a-subdir/whatever.c

T a-subdir/subsubdir/fish.c

T b-subdir/random.c

floss$

Then, when it’s time to merge the second change into the trunk, you can use that
conveniently placed tag to delimit the earlier revision:

floss$ cvs -q update -d -j Release-1999_05_01-bugfixes-fix-number-1 \
-j Release-1999_05_01-bugfixes

RCS file: /usr/local/cvs/myproj/b-subdir/random.c,v

retrieving revision 1.2.2.1

retrieving revision 1.2.2.2

Merging differences between 1.2.2.1 and 1.2.2.2 into random.c

floss$

This way, of course, is much better than trying to recall how long ago you made one
change versus another, but it only works if you remember to tag the branch every time it
is merged to the trunk. The lesson, therefore, is to tag early and tag often! It’s better to
err on the side of too many tags (as long as they all have descriptive names) than to have
too few. In these last examples, for instance, there was no requirement that the new tag
on the branch have a name similar to the branch tag itself. Although I named it Release-
1999_05_01-bugfixes-fix-number-1, it could just as easily have been fix1l. However,
the former is preferable, because it contains the name of the branch and thus won’t ever be
confused with a tag on some other branch. (Remember that tag names are unique within
files, not within branches. You can’t have two tags named fix1 in the same file, even if
they refer to revisions on different branches.)

Creating A Tag Or Branch Without A Working Copy

As stated earlier, tagging affects the repository, not the working copy. That begs the
question: Why require a working copy at all when tagging? The only purpose that it serves
is to designate which project and which revisions of the various files in the project are being
tagged. If you could specify the project and revisions independently of the working copy,
no working copy would be necessary.

There is such a way: the rtag command (for "repository tag"). It’s very similar to tag;
a couple of examples will explain its usage. Let’s go back to the moment when the first
bug report came in and we needed to create a branch rooted at the last public release. We
checked out a working copy at the release tag and then ran tag -b on it:

floss$ cvs tag -b Release-1999_05_01-bugfixes
This created a branch rooted at Release-1999_05_01. However, because we know the
release tag, we could have used it in an rtag command to specify where to root the branch,
not even bothering with a working copy:
floss$ cvs rtag -b -r Release-1999_05_01 Release-1999_05_01-bugfixes myproj

That’s all there is to it. That command can be issued from anywhere, inside or outside a
working copy. However, your CVSROOT environment variable would have to point to the

An Overview of CVS

repository, of course, or you can specify it with the global -d option. It works for non-branch
tagging, too, but it’s less useful that way because you have to specify each file’s revision
number, one by one. (Or you can refer to it by tag, but then you’d obviously already have
a tag there, so why would you want to set a second one on the exact same revisions?)

You now know enough to get around in CVS and probably enough to start working with
other people on a project. There are still a few minor features that haven’t been introduced,
as well as some unmentioned but useful options to features already seen. These will all be
presented as appropriate in chapters to come, in scenarios that will demonstrate both how
and why to use them. When in doubt, don’t hesitate to consult the Cederqvist manual; it
is an indispensable resource for serious CVS users.

Open Source Development With CVS

Repository Administration

Repository Administration

In [An Overview of CVS], page 5, you learned enough CVS to use it effectively as a
project participant. If you’re going to be a project maintainer, however, you’ll need to
know how to install CVS and administer repositories. In this chapter, we’ll throw back
the curtain and look in detail at how the repository is structured, and how CVS uses it.
You’ll learn all the major steps CVS goes through during updates and commits, and how
you can modify its behavior. By understanding how CVS works, you’ll also be able to trace
problems to their causes, and fix them in maintainable ways.

This may sound very involved, but remember that CVS has already proven quite long-
lived, and will probably be around for many years to come. Whatever you learn now will
be useful for a long time. CVS also tends to become more indispensable the more you use
it. If you're going to be that dependent on something (and trust me, you are), it’s worth
really getting to know it.

With that in mind, let’s begin at the beginning: putting CVS on your system.

Getting And Installing CVS

In many cases, you won’t have to go out and get CVS, because it will already be on
your system. If you run one of the major Linux or FreeBSD distributions, it’s probably
already installed in /usr/bin or some other likely location. If not, Red Hat Linux users can
usually find an RPM (Red Hat Package) for the latest, or nearly latest, version of CVS
in their distributions. And Debian users can install the latest Debian package with these
commands:

floss$ apt-get update
floss$ apt-get install cvs

If CVS isn’t already on your machine, you’ll probably have to build it from source.
If you’re a non-Unix user, you’ll probably find it easier to get a prebuilt binary for your
operating system (more on that later). Fortunately, CVS is fully autoconfiscated — that is,
it uses the GNU autoconfiguration mechanism, making compilation from source surprisingly
easy.

Getting And Building CVS Under Unix

As of this writing, there are two canonical sites from which you can download CVS. One
is the Free Software Foundation’s FTP site, ftp://ftp.gnu.org/gnu/cvs/, which offers
CVS as an official GNU tool. The other is Cyclic Software’s download site. Cyclic Software
is, if not the maintainer of CVS, then the "maintainer of the maintainers", by providing
a repository server and download access for users and developers. They distribute releases
from http://download.cyclic.com/pub/.

Either location is fine. In the following example, I use Cyclic Software’s site. If you
point your FTP client (probably your Web browser) there, you’ll see a list of directories,
something like this:

Index of /pub
cvs-1.10.5/ 18-Feb-99 21:36 -
cvs-1.10.6/ 17-May-99 10:34 -

Open Source Development With CVS

cvs-1.10/ 09-Dec-98 17:26 -
macintosh/ 23-Feb-99 00:53 -
0s2/ 09-Dec-98 17:26 -
packages/ 09-Dec-98 17:26 -
rcs/ 09-Dec-98 17:26 -
tkcvs/ 09-Dec-98 17:26 -
training/ 09-Dec-98 17:26 -
unix/ 09-Dec-98 17:26 -
vms/ 09-Dec-98 17:26 -

Pay attention to the directories beginning with "cvs-" (you can ignore most of the
others). There are three such directories, which means that you’re already faced with a
choice: Get the designated "stable" release, or go with a newer (but less-tested) interim
release. The stable releases have only one decimal point, as in "cvs-1.10", whereas the
interim releases have minor version increments tacked on the end, as in "1.10.5".

The GNU site usually only offers the major releases, not the interim ones, so you won’t
see all of this if you get CVS from there. In general, the interim releases have been pretty
safe, and sometimes contain fixes to bugs that were found in the major release. Your best
policy is to go with the highest interim release, but if you encounter any problems with it,
be prepared to drop back to the previous release, as many times as necessary. The highest
release listed in the earlier example is cvs-1.10.6. Entering that directory, we see this:

Index of /pub/cvs-1.10.6
cvs-1.10.6.tar.gz 17-May-99 08:44 2.2M

That’s it — the full source code to CVS. Just download it to your machine, and you're
ready to build. At this point, if you're already familiar with the standard build process for
GNU tools, you know what to do and probably don’t need to read anything between here
and the section [Anatomy Of A CVS Distribution], page 67. On the other hand, if you're
not sure how to proceed, then read on....

The following compilation instructions and examples assume that you have a fairly stan-
dard distribution of Unix. Any of the free versions of Unix (for example, FreeBSD or
Linux) should work with no problem, as should the major commercial Unix versions (such
as SunOS/Solaris, AIX, HP-UX, or Ultrix). Even if these instructions don’t work for you
exactly as written, don’t give up hope. Although covering the details of compiling on every
operating system is beyond the scope of this book, I'll give some pointers to other help
resources later in this chapter.

Anyway, to proceed with the compilation, first unpack the tar file using GNU gun-
zip and tar (if you don’t have these installed on your system, you can get gunzip from
ftp://ftp.gnu.org/gnu/gzip/ and GNU’s version of tar from ftp://ftp.gnu.org/gnu/tar/):
floss$ gunzip cvs-1.10.6.tar.gz
floss$ tar xvf cvs-1.10.6.tar
You’ll see a lot of file names fly by on your screen.

Now you have a new directory on your machine — cvs-1.10.6 — and it is populated with
the CVS source code. Go into that directory and configure CVS for your system, by using
the provided configure script:

floss$ cd cvs-1.10.6
floss$./configure

Repository Administration

creating cache ./config.cache

checking for gcc... gcc

checking whether we are using GNU C... yes

checking whether gcc accepts -g... yes

checking how to run the C preprocessor... gcc -E
(etc)

When the configure command finishes, the source tree will know everything it needs to
know about compiling on your machine. The next step is to type:

floss$ make
You'll see lots of output fly by, then type:
floss$ make install

You’ll see yet more output fly by; when it’s all over, CVS will be installed on your
system. (You will probably need to do that last step as the superuser.)

By default, the CVS executable will end up as ‘/usr/local/bin/cvs’. This assumes
you have a decent make program installed on your system (again, if you don’t have one, get
the GNU project’s make from ftp://ftp.gnu.org/gnu/make/).

If you want CVS to install to a location other than /usr/local/bin, you should change
how you run the initial configuration step. For example,

floss$./configure --prefix=/usr

results in CVS being installed as /usr/bin/cvs (it always ends up as PREFIX /bin/cvs).
The default prefix is /usr/local, which is fine for most installations.

Note To Experienced Users: Although older versions of CVS consisted of more than
just an executable in that they depended on having RCS installed as well, this has not
been the case since Version 1.10. Therefore, you don’t need to worry about any libraries or
executables other than cvs itself.

If you just intend to use CVS to access remote repositories, the preceding is all you need
to do. If you also plan to serve a repository from this system, a few additional steps are
necessary, which are covered later in this chapter.

Getting And Installing CVS Under Windows

Unless you're truly religious about having the source code to your executable, you don’t
need to compile CVS from source on your Windows box. Unlike Unix, the necessary com-
pilation tools probably do not already exist on your system, so a source build would involve
first going out and getting those tools. Because such a project is beyond the scope of this
book, I’ll just give instructions for getting a precompiled CVS binary.

First, note that Windows binary distributions of CVS are usually made only for major
releases of CV'S — not for the interim releases — and are not found on the GNU FTP site. So
you’ll need to go to Cyclic Software’s download site, where in the major version directory,
http://download.cyclic.com/pub/cvs-1.10/, you’ll see an extra subdirectory

Index of /pub/cvs-1.10
cvs-1.10.tar.gz 14-Aug-98 09:35 2.4M
windows/

inside of which is a ZIP file:

Open Source Development With CVS

Index of /pub/cvs-1.10/windows
cvs-1.10-win.zip 14-Aug-98 10:10 589k

This ZIP file contains a binary distribution of CVS. Download and extract that ZIP file:

floss$ unzip cvs-1.10-win.zip

Archive: cvs-1.10-win.zip
inflating: cvs.html
inflating: cvs.exe
inflating: README
inflating: FAQ
inflating: NEWS
inflating: patch.exe
inflating: win32gnu.dll

The README there contains detailed instructions. For most installations, they can be
summarized as follows: Put all of the EXE and DLL files in a directory in your PATH.
Additionally, if you're going to be using the pserver method to access a remote repository,
you may need to put the following in your ‘C:\AUTOEXEC.BAT’ file and reboot:

set HOME=C:
This tells CVS where to store the .cvspass file.

CVS running under Windows cannot currently serve repositories to remote machines;
it can be a client (connecting to remote repositories), and operate in local mode (using a
repository on the same machine). For the most part, this book assumes that CVS under
Windows is operating as a client. However, it shouldn’t be too hard to set up a local
repository under Windows after reading the Unix-oriented instructions in the rest of this
chapter.

If you are only accessing remote repositories, you may not even need to run CVS. There
is a tool called WinCyvs that implements only the client-side portion of CVS. It is distributed
separately from CVS itself but, like CVS, is freely available under the GNU General Public
License. More information is available from http://www.wincvs.org.

Getting And Installing CVS On A Macintosh

CVS is available for the Macintosh, but not as part of the main distribution. At the
moment, there are actually three separate Macintosh CVS clients available:

MacCvs — http://www.wincvs.org
MacCVSClient — http://www.glink.net.hk/"jb/MacCVSClient or http://www.cyclic.com/maccvscl:
MacCVS Pro — http://www.maccvs.org

Frankly, I have no idea which one is best. Try them all, not necessarily in the order
given, and see which one you like. MacCVS Pro seems to be under active development.
MacCvs is apparently a companion project of WinCVS and shares a home page with it.
(As of this writing, a notice on the WinCVS page states, "Development of MacCvs will be
resumed soon.", whatever that means.)

Repository Administration

Limitations Of The Windows And Macintosh Versions

The Windows and Macintosh distributions of CVS are generally limited in functionality.
They can all act as clients, meaning that they can contact a repository server to obtain
a working copy, commit, update, and so on. But they can’t serve repositories themselves.
If you set it up right, the Windows port can use a local-disk repository, but it still can’t
serve projects from that repository to other machines. In general, if you want to have a
network-accessible CVS repository, you must run the CVS server on a Unix box.

Anatomy Of A CVS Distribution

The preceding instructions are designed to get you up and running quickly, but there’s
a lot more inside a CVS source distribution than just the code. Here’s a quick road map to
the source tree, so you’ll know which parts are useful resources and which can be ignored.

Informational Files

In the top level of the distribution tree, you’ll find several files containing useful informa-
tion (and pointers to further information). They are, in approximate order of importance:

‘NEWS’ — This file lists the changes from one release to the next, in reverse chronological
order (that is, most recent first). If you've already been using CVS for a while and
have just upgraded to a new version, you should look at the NEWS file to see what
new features are available. Also, although most changes to CVS preserve backward
compatibility, noncompatible changes do occur from time to time. It’s better to read
about them here than be surprised when CVS doesn’t behave the way you expect it
to.

‘BUGS’ — This file contains exactly what you think it does: a list of known bugs in CVS.
They usually aren’t show-stoppers, but you should read over them whenever you install
a new release.

‘DEVEL-CVS’ — This file is the CVS "constitution". It describes the process by which
changes are accepted into the main CVS distribution and the procedures through which
a person becomes a CVS developer. You don’t really need to read it if you just want
to use CVS; however, it’s highly interesting if you want to understand how the mostly
uncoordinated efforts of people scattered across the globe coalesce into a working,
usable piece of software. And of course, it’s required reading if you plan to submit a
patch (be it a bug fix or new feature) to CVS.

‘HACKING’ — Despite its name, the HACKING file doesn’t say much about the design
or implementation of CVS. It’s mainly a guide to coding standards and other technical
administrivia for people thinking of writing a patch to CVS. It can be thought of as
an addendum to the DEVEL-CVS file. After you understand the basic philosophy of
CVS development, you must read the HACKING file to translate that into concrete
coding practices.

‘FAQ’ — This is the CVS "Frequently Asked Questions" document. Unfortunately it has
a rather spotty maintenance history. David Grubbs took care of it until 1995, then he
(presumably) got too busy and it languished for a while. Eventually, in 1997, Pascal
Molli took over maintenance. Molli also didn’t have time to maintain it by hand, but

Open Source Development With CVS

at least he found time to put it into his automated FAQ-O-Matic system, which allows
the public to maintain the FAQ in a decentralized manner (basically, anyone can edit
or add entries via a Web form). This was probably a good thing, in that at least the
FAQ was once again being maintained; however, its overall organization and quality
control are not on the same level as if a person were maintaining it.

The master version of the FAQ is always available from Molli’s Web site (http://www.loria.fr/ molli/c
under the link "Documentation"). The FAQ file shipped with CVS distributions is

generated automatically from that FAQ-O-Matic database, so by the time it reaches

the public it’s already a little bit out of date. Nevertheless, it can be quite helpful

when you’re looking for hints and examples about how to do something specific (say,

merging a large branch back into the trunk or resurrecting a removed file). The best

way to use it is as a reference document; you can bring it up in your favorite editor

and do text searches on terms that interest you. Trying to use it as a tutorial would be

a mistake — it’s missing too many important facts about CVS to serve as a complete

guide.

Subdirectories

The CVS distribution contains a number of subdirectories. In the course of a normal
installation, you won’t have to navigate among them, but if you want to go poking around
in the sources, it’s nice to know what each one does. Here they are:

contrib/
diff/
doc/
emx/
1lib/
man/
os2/
src/
tools/
vms/
windows-NT/
zlib/

The majority of these can be ignored. The emx/, 0s2/, vms/, and windows-NT/ sub-
directories all contain operating-system-specific source code, which you would only need if
you're actually trying to debug a code-level problem in CVS (an unlikely situation, though
not unheard of). The diff/ and zlib/ subdirectories contain CVS’s internal implementations
of the diff program and the GNU gzip compression library, respectively. (CVS uses the
latter to reduce the number of bits it has to send over the network when accessing remote
repositories.)

The contrib/ and tools/ subdirectories contain free third-party software meant to be
used with CVS. In contrib/, you will find an assortment of small, specialized shell scripts
(read contrib/README to find out what they do). The tools/ subdirectory used to contain
contributed software, but now contains a README file, which says in part:

This subdirectory formerly contained tools that can be used with CVS.
In particular, it used to contain a copy of pcl-cvs version 1.x.
Pcl-cvs is an Emacs interface to CVS.

Repository Administration

If you are looking for pcl-cvs, we’d suggest pcl-cvs version 2.x, at:
ftp://ftp.weird.com/pub/local/
The PCL-CVS package it’s referring to is very handy, and I'll have more to say about it
in [Third-Party Tools|, page 197.

The src/ and lib/ subdirectories contain the bulk of the CVS source code, which involves
the CVS internals. The main data structures and commands are implemented in src/,
whereas lib/ contains small code modules of general utility that CVS uses.

The man/ subdirectory contains the CVS man pages (intended for the Unix online
manual system). When you ran make install, they were incorporated into your Unix system’s
regular man pages, so you can type

floss$ man cvs

and get a rather terse introduction and subcommand reference to CVS. Although useful
as a quick reference, the man pages may not be as up to date or complete as the Cederqvist
manual (see the next section); however, the man pages are more likely to be incomplete
than actually wrong, if it’s any comfort.

The Cederqvist Manual

That leaves the doc/ subdirectory, whose most important inhabitant is the famed Ced-
erqvist. These days, it’s probably a stretch to call it "the Cederqvist". Although Per
Cederqvist (of Signum Support, Linkoping Sweden, www.signum.se) wrote the first version
around 1992, it has been updated since then by many other people. For example, when
contributors add a new feature to CVS, they usually also document it in the Cederqvist.

The Cederqvist manual is written in Texinfo format, which is used by the GNU project
because it’s relatively easy to produce both online and printed output from it (in Info
and PostScript formats, respectively). The Texinfo master file is doc/cvs.texinfo, but CVS
distributions come with the Info and PostScript pregenerated, so you don’t have to worry
about running any Texinfo tools yourself.

Although the Cederqvist can be used as an introduction and tutorial, it is probably most
useful as a reference document. For that reason, most people browse it online instead of
printing it out (although the PostScript file is ‘doc/cvs.ps’, for those with paper to spare).
If this is the first time you’ve installed CVS on your system, you’ll have to take an extra
step to make sure the manual is accessible online.

The Info files (doc/cvs.info, doc/cvs.info-1, doc/cvs.info-2, and so on) were installed for
you when you ran make install. Although the files were copied into the system’s Info tree,
you may still have to add a line for CVS to the Info table of contents, the "Top" node.
(This will only be necessary if this is the first time CVS has been installed on your system;
otherwise, the entry from previous installations should already be in the table of contents.)

If you’ve added new Info documentation before, you may be familiar with the process.
First figure out where the Info pages were installed. If you used the default installation (in
/usr/local/), then the Info files are /usr/local/info/cvs.info*. If you installed using

floss$./configure --prefix=/usr

the files ended up as /usr/info/cvs.*. After you locate the files, you'll need to add a
line for CVS to the Info table of contents, which is in a file named dir in that directory

Open Source Development With CVS

(so in the latter case, it would be /usr/info/dir). If you don’t have root access, ask your
system administrator to do it. Here is an excerpt from dir before the reference to CVS
documentation was added:

* Bison: (bison). The Bison parser generator.
* Cpp: (cpp). The GNU C preprocessor.
* Flex: (flex). A fast scanner generator

And here is the same region of dir afterwards:

* Bison: (bison). The Bison parser generator.
* Cpp: (cpp). The GNU C preprocessor.

* Cvs: (cvs). Concurrent Versions System
* Flex: (flex). A fast scanner generator

The format of the line is very important. You must include the asterisk, spaces, and
colon in ‘* Cvs:’ and the parentheses and period in ‘(cvs) .” after it. If any of these elements
are missing, the Info dir format will be corrupt, and you’ll be unable to read the Cederqvist.

Once the manual is installed and referred to from the table of contents, you can read it
with any Info-compatible browser. The ones most likely to be installed on a typical Unix
system are either the command-line Info reader, which can be invoked this way if you want
to go straight to the CVS pages

floss$ info cvs
and the one within Emacs, which is invoked by typing
M-x info
or
C-h i
Take whatever time is necessary to get the Cederqvist set up properly on your system

when you install CVS; it will pay off many times down the road when you need to look
something up.

Other Sources Of Information

In addition to the Cederqvist, the FAQ, and the other files in the distribution it-
self, there are Internet resources devoted to CVS. If you're going to administrate a CVS
server, you’ll probably want to join the info-cvs mailing list. To subscribe, send email to
info-cvs-request@gnu.org (the list itself is info-cvs@gnu.org). Traffic can be medium
to heavy, around 10 to 20 emails a day, most of them questions seeking answers. The ma-
jority of these can be deleted without reading (unless you want to help people by answering
their questions, which is always nice), but every now and then someone will announce the
discovery of a bug or announce a patch that implements some feature you’'ve been wanting.

You can also join the formal bug report mailing list, which includes every bug report
sent in. This probably isn’t necessary, unless you intend to help fix the bugs, which would
be great, or you're terrifically paranoid and want to know about every problem other people
find with CVS. If you do want to join, send email to bug-cvs-request@gnu.org.

There’s also a Usenet newsgroup, comp.software.config-mgmt, which is about version
control and configuration management systems in general, in which there is a fair amount
of discussion about CVS.

Repository Administration

Finally, there are at least three Web sites devoted to CVS. Cyclic Software’s http://www.cyclic.com
has been CVS’s informal home site for a few years, and probably will continue to be for the
foreseeable future. Cyclic Software also provides server space and Net access for the repos-
itory where the CVS sources are kept. The Cyclic Web pages contain comprehensive links
to experimental patches for CVS, third-party tools that work with CVS, documentation,
mailing list archives, and just about everything else. If you can’t find what you need in the
distribution, http://www.cyclic.comis the place to start looking.

Two other good sites are Pascal Molli’shttp://www.loria.fr/"molli/cvs-index.html
and Sean Dreilinger’s http://durak.org/cvswebsites/. The biggest attraction at Molli’s
site is, of course, the FAQ, but it also has links to CVS-related tools and mailing list
archives. Dreilinger’s site specializes in information about using CVS to manage Web
documents and also has a CVS-specific search engine.

Starting A Repository

Once the CVS executable is installed on your system, you can start using it right away
as a client to access remote repositories, following the procedures described in [An Overview
of CVS], page 5. However, if you want to serve revisions from your machine, you have to
create a repository there. The command to do that is

floss$ cvs -d /usr/local/newrepos init

where ‘/usr/local/newrepos’ is a path to wherever you want the repository to be (of
course, you must have write permission to that location, which may imply running the
command as the root user). It may seem somewhat counterintuitive that the location of
the new repository is specified before the init subcommand instead of after it, but by using
the -d option, it stays consistent with other CVS commands.

The command will return silently after it is run. Let’s examine the new directory:

floss$ 1s -1d /usr/local/newrepos

drwxrwxr-x 3 root root 1024 Jun 19 17:59 /usr/local/newrepos/
floss$ cd /usr/local/newrepos

floss$ 1s

CVSROOT

floss$ cd CVSROOT

floss$ 1s

checkoutlist config,v history notify taginfo,v
checkoutlist,v cvswrappers loginfo notify,v verifymsg
commitinfo cvswrappers,v loginfo,v rcsinfo verifymsg,v
commitinfo,v editinfo modules rcsinfo,v

config editinfo,v modules,v taginfo

floss$

The single subdirectory in the new repository — CVSROOT/ — contains various admin-
istrative files that control CVS’s behavior. Later on, we’ll examine those files one by one;
for now, the goal is just to get the repository working. In this case, "working" means users
can import, check out, update, and commit projects.

Don’t confuse the CVSROOT environment variable introduced in [An Overview of CVS],
page 5 with this CVSROOT subdirectory in the repository. They are unrelated — it is an

Open Source Development With CVS

unfortunate coincidence that they share the same name. The former is a way for users to
avoid having to type ‘-d <repository-location>’ every time they use CVS; the latter is
the administrative subdirectory of a repository.

Once the repository is created, you must take care of its permissions. CVS does not
require any particular, standardized permission or file ownership scheme; it merely needs
write access to the repository. However — partly for security reasons, but mainly for your
own sanity as an administrator — I highly recommend that you take the following steps:

1. Add a Unix group cvs to your system. Any users who need to access the repository
should be in this group. For example, here’s the relevant line from my machine’s
‘/etc/group’ file:

cvs:*:105:kfogel ,sussman, jimb,noel,lefty,fitz,craig,anonymous, jrandom

2. Make the repository’s group ownership and permissions reflect this new group:

floss$ cd /usr/local/newrepos
floss$ chgrp -R cvs .
floss$ chmod ug+rwx . CVSROOT

Now any of the users listed in that group can start a project by running cvs import, as
described in [An Overview of CVS], page 5. Checkout, update, and commit should work as
well. They can also reach the repository from remote locations by using the :ext: method,
assuming that they have rsh or ssh access to the repository machine. (You may have noticed
that the chgrp and chmod commands in that example gave write access to a user named
anonymous, which is not what one would expect. The reason is that even anonymous,
read-only repository users need system-level write access, so that their CVS processes can
create temporary lockfiles inside the repository. CVS enforces the "read-only" restriction
of anonymous access not through Unix file permissions, but by other means, which will be
covered in [Anonymous Access|, page 75.)

If your repository is intended to serve projects to the general public, where contrib-
utors won’t necessarily have accounts on the repository machine, you should set up the
password-authenticating server now (see [The Password-Authenticating Server|, page 72).
It’s necessary for anonymous read-only access, and it’s also probably the easiest way to
grant commit access to certain people without giving them full accounts on the machine.

The Password-Authenticating Server

Before running through the steps needed to set up the password server, let’s examine
how such connections work in the abstract. When a remote CVS client uses the :pserver:
method to connect to a repository, the client is actually contacting a specific port number
on the server machine — specifically, port number 2401 (which is 49 squared, if you like that
sort of thing). Port 2401 is the designated default port for the CVS pserver, although one
could arrange for a different port to be used as long as both client and server agree on it.

The CVS server is not actually waiting for connections at that port — the server won’t get
started up until a connection actually arrives. Instead, the Unix inetd (InterNET Daemon)
program is listening on that port, and needs to know that when it receives a connection
request there, it should start up the CVS server and connect it to the incoming client.

Repository Administration

This is accomplished by modifying inetd’s configuration files: ‘/etc/services’ and
‘/etc/inetd.conf’. The services file maps raw port numbers to service names and then
inetd.conf tells inetd what to do for a given service name.

First, put a line like this into /etc/services (after checking to make sure it isn’t already
there):

cvspserver 2401/tcp
Then in /etc/inetd.conf, put this:
cvspserver stream tcp nowait root /usr/local/bin/cvs cvs \
--allow-root=/usr/local/newrepos pserver
(In the actual file, this should be all one long line, with no backslash.) If your system
uses tcpwrappers, you may want to use something like this instead:
cvspserver stream tcp nowait root /usr/sbin/tcpd /usr/local/bin/cvs \
--allow-root=/usr/local/newrepos pserver
Now, restart inetd so it notices the changes to its configuration files (if you don’t know
how to restart the daemon, just reboot the machine — that will work too).

That’s enough to permit connections, but you’ll also want to set up special CVS pass-
words — separate from the users’ regular login passwords — so people can access the repository
without compromising overall system security.

The CVS password file is CVSROOT /passwd in the repository. It was not created by
default when you ran cvs init, because CVS doesn’t know for sure that you’ll be using
pserver. Even if the password file had been created, CVS would have no way of knowing

what usernames and passwords to create. So, you’ll have to create one yourself; here’s a
sample CVSRoot /passwd file:

kfogel:rKabjzULzmhOo
anonymous : XR4EZcEsOszik
melissa:tGX1£S8sunbrY:pubcvs

The format is as simple as it looks. Each line is:
<USERNAME> : <ENCRYPTED_PASSWORD> : <OPTIONAL_SYSTEM_USERNAME>

The extra colon followed by an optional system username tells CVS that connections
authenticated with USERNAME should run as the system account SYSTEM_USERNAME
— in other words, that CVS session would only be able to do things in the repository that
someone logged in as SYSTEM USERNAME could do.

If no system username is given, USERNAME must match an actual login account name
on the system, and the session will run with that user’s permissions. In either case, the
encrypted password should not be the same as the user’s actual login password. It should
be an independent password used only for CVS pserver connections.

The password is encrypted using the same algorithm as the standard Unix system pass-
words stored in /etc/passwd. You may be wondering at this point, how does one acquire an
encrypted version of a password? For Unix system passwords, the passwd command takes
care of the encryption in /etc/passwd for you. Unfortunately, there is no corresponding
cvs passwd command (it has been proposed several times, but no one’s gotten around to
writing it — perhaps you’ll do it?).

This is an inconvenience, but only a slight one. If nothing else, you can always temporar-
ily change a regular user’s system password using passwd, cut and paste the encrypted text

Open Source Development With CVS

from /etc/passwd into CVSROOT /passwd, and then restore the old password (note that
on some systems, the encrypted passwords are found in /etc/shadow and are readable only
by root.)

That scheme is workable but rather cumbersome. It would be much easier to have a
command-line utility that takes a plain text password as its argument and outputs the
encrypted version. Here is such a tool, written in Perl:

#!/usr/bin/perl

srand (time());

my $randletter = "(int (rand (26)) + (int (rand (1) + .5) % 2 7 65 : 97))";
my $salt = sprintf ("chc", eval $randletter, eval $randletter) ;

my $plaintext = shift;

my $crypttext = crypt ($plaintext, $salt);

print "${crypttext}\n";
I keep the preceding script in ‘/usr/local/bin/cryptout.pl’:
floss$ 1s -1 /usr/local/bin/cryptout.pl

-rwxr-xr-x 1 root root 265 Jun 14 20:41 /usr/local/bin/cryptout.pl
floss$ cryptout.pl "some text"
sB3A79YDX5L4s

floss$

If T took the output of this example and used it to create the following entry in CVS-
ROOT /passwd

jrandom:sB3A79YDX5L4s:craig
then someone could connect to the repository with the following command:
remote$ cvs -d :pserver:jrandom@floss.red-bean.com:/usr/local/newrepos login

They could then type some text as their password and thereafter be able to execute
CVS commands with the same access privileges as the system user craig.

If someone attempts to authenticate with a username and password that don’t appear
in CVSROOT /passwd, CVS will check to see if that username and password are present in
/etc/passwd. If they are (and if the password matches, of course), CVS will grant access. It
behaves this way for the administrator’s convenience, so that separate CVSROOT /passwd
entries don’t have to be set up for regular system users. However, this behavior is also a
security hole, because it means that if one of those users does connect to the CVS server, her
regular login password will have crossed over the network in cleartext, potentially vulnerable
to the eyes of password sniffers. A bit further on, you’ll learn how to turn off this "fallback"
behavior, so that CVS consults only its own passwd file. Whether you leave it on or off,
you should probably force any CVS users who also have login accounts to maintain different
passwords for the two functions.

Although the passwd file authenticates for the whole repository, with a little extra work
you can still use it to grant project-specific access. Here’s one method:

Suppose you want to grant some remote developers access to project foo, and others
access to project bar, and you don’t want developers from one project to have commit

Repository Administration

access to the other. You can accomplish this by creating project-specific user accounts and
groups on the system and then mapping to those accounts in the CVSROOT /passwd file.

Here’s the relevant excerpt from /etc/passwd

cvs-foo:%:600:600:Public CVS Account for Project Foo:/usr/local/cvs:/bin/false
cvs-bar:*:601:601:Public CVS Account for Project Bar:/usr/local/cvs:/bin/false

and from /etc/group

cvs—-foo:*:600:cvs-foo
cvs-bar:*:601:cvs-bar

and, finally, CVSROOT /passwd:

kcunderh:rKabjzULzmhOo:cvs-foo

jmankoff :tGX1£S8sunbrY:cvs-foo

brebard: cAXVPNZN6uFH2:cvs-foo

xwang:qp5lsf7nzRzfs:cvs-foo

dstone: JDNNF6HeX/yLw: cvs—-bar

twp : g1UHEM8Khcb06: cvs-bar

ffranklin:cG6/6yXbS9BHI:cvs-bar

yyang:YoEqcCeCUqlvQ:cvs-bar

Some of the CVS usernames map onto the system user account cvs-foo and some onto

cvs-bar. Because CVS runs under the user ID of the system account, you just have to make
sure that the relevant parts of the repository are writeable only by the appropriate users
and groups. If you just make sure that the user accounts are locked down pretty tight (no
valid login password, ‘/bin/false’ as the shell), then this system is reasonably secure (but
see later in this chapter about CVSROOT permissions!). Also, CVS does record changes
and log messages under the CVS username, not the system username, so you can still tell
who is responsible for a given change.

Anonymous Access

So far we’ve only seen how to use the password-authenticating server to grant normal full
access to the repository (although admittedly one can restrict that access through carefully
arranged Unix file permissions). Turning this into anonymous, read-only access is a simple
step: You just have to add a new file, or possibly two, in CVSROOT/. The files’ names are
readers and writers — the former containing a list of usernames who can only read the
repository, the latter users who can read and write.

If you list a username in CVSROOT /readers, that user will have only read access to all
projects in the repository. If you list a username in CVSROOT /writers, that user will have
write access, and every pserver user not listed in writers will have read-only access (that is,
if the writers file exists at all, it implies read-only access for all those not listed in it). If
the same username is listed in both files, CVS resolves the conflict in the more conservative
way: the user will have read-only access.

The format of the files is very simple: one user per line (don’t forget to put a newline
after the last user). Here is a sample readers file:
anonymous
splotnik
guest

Open Source Development With CVS

jbrowse

Note that the files apply to CVS usernames, not system usernames. If you use user
aliasing in the CVSROOT /passwd file (putting a system username after a second colon),
the leftmost username is the one to list in a readers or writers file.

Just to be painfully accurate about it, here is a formal description of the server’s behavior
in deciding whether to grant read-only or read-write access:

If a readers file exists and this user is listed in it, then she gets read-only access. If a
writers file exists and this user is not listed in it, then she also gets read-only access (this is
true even if a readers file exists but that person is not listed there). If that person is listed
in both, she gets read-only access. In all other cases, that person gets full read-write access.

Thus, a typical repository with anonymous CVS access has this (or something like it) in
CVSROOT /passwd

anonymous : XR4EZcEsOszik
this (or something like it) in /etc/passwd

anonymous: !:1729:105: Anonymous CVS User:/usr/local/newrepos:/bin/false
and this in CVSROOT /readers:

anonymous

And, of course, the aforementioned setup in /etc/services and /etc/inetd.conf. That’s
all there is to it!

Note that some older Unix systems don’t support usernames longer than eight charac-
ters. One way to get around this would be to call the user anon instead of anonymous
in CVSROOT /passwd and in the system files, because people often assume that anon is
short for anonymous anyway. But it might be better to put something like this into the
CVSROOT /passwd file

anonymous : XR4EZcEsOszik:cvsanon

(and then of course use cvsanon in the system files). That way, you’d be able to publish
a repository address that uses anonymous, which is more or less standard now. People
accessing the repository with
cvs -d :pserver:anonymous@cvs.foobar.com:/usr/local/newrepos (etc...)

would actually run on the server as cvsanon (or whatever). But they wouldn’t need to
know or care about how things are set up on the server side — they’d only see the published
address.

Repository Structure

The new repository still has no projects in it. Let’s re-run the initial import from [An
Overview of CVS], page 5, watching what happens to the repository. (For simplicity’s
sake, all commands will assume that the CVSROOT environment variable has been set to
/usr/local/newrepos, so there’s no need to specify the repository with -d on imports and
checkouts.)

floss$ 1s /usr/local/newrepos
CVSROOT/

floss$ pwd
/home/jrandom/src/

Repository Administration

floss$ 1s

myproj/

floss$ cd myproj

floss$ cvs import -m "initial import into CVS" myproj jrandom start
N myproj/README.txt

N myproj/hello.c

cvs import: Importing /usr/local/newrepos/myproj/a-subdir

N myproj/a-subdir/whatever.c

cvs import: Importing /usr/local/newrepos/myproj/a-subdir/subsubdir
N myproj/a-subdir/subsubdir/fish.c

cvs import: Importing /usr/local/newrepos/myproj/b-subdir

N myproj/b-subdir/random.c

No conflicts created by this import

floss$ 1s /usr/local/newrepos

CVSROOT/ myproj/

floss$ cd /usr/local/newrepos/myproj

floss$ 1s

README.txt,v a-subdir/ b-subdir/ hello.c,v
floss$ cd a-subdir

floss$ 1s

subsubdir/ whatever.c,v

floss$ cd ..

floss$

Before the import, the repository contained only its administrative area, CVSROOT.
After the import, a new directory — ‘myproj’ — appeared. The files and subdirectories inside
that new directory look suspiciously like the project we imported, except that the files have
the suffix ,v. These are RCS-format version control files (the ,v stands for "version"), and
they are the backbone of the repository. Each RCS file stores the revision history of its
corresponding file in the project, including all branches and tags.

RCS Format

You do not need to know any of the RCS format to use CVS (although there is an
excellent writeup included with the source distribution, see doc/RCSFILES). However, a
basic understanding of the format can be of immense help in troubleshooting CVS problems,
so we’'ll take a brief peek into one of the files, ‘hello.c,v’. Here are its contents:

head 1.1;

branch 1.1.1;

access ;

symbols start:1.1.1.1 jrandom:1.1.1;
locks ; strict;

comment @ * Q;

1.1
date 99.06.20.17.47.26; author jrandom; state Exp;

Open Source Development With CVS

branches 1.1.1.1;
next;

1.1.1.1

date 99.06.20.17.47.26; author jrandom; state Exp;
branches ;

next;

desc
(]G]

1.1

log

@Initial revision

(6]

text

@#include <stdio.h>

void
main ()
{
printf ("Hello, world!\n");
}
¢}

1.1.1.1

log

@initial import into CVS
e

text

@@

Whew! Most of that you can ignore; don’t worry about the relationship between 1.1
and 1.1.1.1, for example, or the implied 1.1.1 branch — they aren’t really significant from a
user’s or even an administrator’s point of view. What you should try to grok is the overall

format. At the top is a collection of header fields:

head 1.1;

branch 1.1.1;

access ;

symbols start:1.1.1.1 jrandom:1.1.1;
locks ; strict;

comment @ * Q;

Farther down in the file are groups of meta-information about each revision (but still

not showing the contents of that revision), such as:

1.1

date 99.06.20.17.47.26; author jrandom; state Exp;
branches 1.1.1.1;

next H

And finally, the log message and text of an actual revision:

Repository Administration

1.1

log

@Initial revision
(6]

text

@#include <stdio.h>

void
main ()
{
printf ("Hello, world!\n");
}
¢}

1.1.1.1

log

@initial import into CVS
e

text

@@

If you look closely, you'll see that the first revision’s contents are stored under the
heading 1.1, but that the log message there is "Initial revision", whereas the log message
we actually used at import time was "initial import into CVS", which appears farther down,
under Revision 1.1.1.1. You don’t need to worry about this discrepancy right now. It
happens because imports are a special circumstance: In order to make repeated imports
into the same project have a useful effect, import actually places the initial revision on both
the main trunk and on a special branch (the reasons for this will become clearer when we
look at vendor branches in [Advanced CVS], page 95). For now, you can treat 1.1 and
1.1.1.1 as the same thing.

The file becomes even more revealing after we commit the first modification to hello.c:

floss$ cvs -Q co myproj
floss$ cd myproj
floss$ emacs hello.c
(make some changes to the file)

floss$ cvs ci -m "print goodbye too"

cvs commit: Examining .

cvs commit: Examining a-subdir

cvs commit: Examining a-subdir/subsubdir

cvs commit: Examining b-subdir

Checking in hello.c;
/usr/local/newrepos/myproj/hello.c,v <-- hello.c
new revision: 1.2; previous revision: 1.1

done

If you look at hello.c,v in the repository now, you can see the effect of the commit:

head 1.2;
access;
symbols

Open Source Development With CVS

start:1.1.1.1 jrandom:1.1.1;
locks; strict;
comment @ *x Q;

1.2

date 99.06.21.01.49.40; author jrandom; state Exp;
branches;

next 1.1;

1.1
date 99.06.20.17.47.26; author jrandom; state Exp;
branches
1.1.1.1;
next ;

1.1.1.1

date 99.06.20.17.47.26; author jrandom; state Exp;
branches;

next 5

desc
(6]

1.2

log

@print goodbye too
e

text

O#include <stdio.h>

void
main ()
{
printf ("Hello, world!\n");
printf ("Goodbye, world!\n");
}
Q

1.1

log

@Initial revision
6]

text

ed7 1

Q

1.1.1.1
log
Q@initial import into CVS

Repository Administration

e
text
@@

Now the full contents of Revision 1.2 are stored in the file, and the text for Revision 1.1
has been replaced with the cryptic formula:

d7 1

The d7 1 is a diff code that means "starting at line 7, delete 1 line". In other words, to
derive Revision 1.1, delete line 7 from Revision 1.2! Try working through it yourself. You’ll
see that it does indeed produce Revision 1.1 — it simply does away with the line we added
to the file.

This demonstrates the basic principle of RCS format: It stores only the differences
between revisions, thereby saving a lot of space compared with storing each revision in full.
To go backwards from the most recent revision to the previous one, it patches the later
revision using the stored diff. Of course, this means that the further back you travel in the
revision history, the more patch operations must be performed (for example, if the file is on
Revision 1.7 and CVS is asked to retrieve Revision 1.4, it has to produce 1.6 by patching
backwards from 1.7, then 1.5 by patching 1.6, then 1.4 by patching 1.5). Fortunately, old
revisions are also the ones least often retrieved, so the RCS system works out pretty well in
practice: The more recent the revision, the cheaper it is to obtain.

As for the header information at the top of the file, you don’t need to know what all of
it means. However, the effects of certain operations show up very clearly in the headers,
and a passing familiarity with them may prove useful.

When you commit a new revision on the trunk, the head label is updated (note how it
became 1.2 in the preceding example, when the second revision to hello.c was committed).
When you add a file as binary or tag it, those operations are recorded in the headers as
well. As an example, we’ll add foo.jpg as a binary file and then tag it a couple of times:

floss$ cvs add -kb foo.jpg

cvs add: scheduling file ’foo.jpg’ for addition

cvs add: use ’cvs commit’ to add this file permanently
floss$ cvs -q commit -m "added a random image; ask jrandom@red-bean.com why"
RCS file: /usr/local/mewrepos/myproj/foo.jpg,v

done

Checking in foo.jpg;
/usr/local/newrepos/myproj/foo.jpg,v <-- foo.jpg
initial revision: 1.1

done

floss$ cvs tag some_random_tag foo.jpg

T foo.jpg

floss$ cvs tag ANOTHER-TAG foo.jpg

T foo.jpg

floss$

Now examine the header section of foo.jpg,v in the repository:

head 1.1;

access;

symbols
ANOTHER-TAG:1.1

Open Source Development With CVS

some_random_tag:1.1;
locks; strict;
comment o# Q;
expand @bQ;

Notice the b in the expand line at the end — it’s due to our having used the -kb flag
when adding the file, and means the file won’t undergo any keyword or newline expansions,
which would normally occur during checkouts and updates if it were a regular text file. The
tags appear in the symbols section, one tag per line — both of them are attached to the first
revision, since that’s what was tagged both times. (This also helps explain why tag names
can only contain letters, numbers, hyphens, and underscores. If the tag itself contained
colons or dots, the RCS file’s record of it might be ambiguous, because there would be no
way to find the textual boundary between the tag and the revision to which it is attached.)

RCS Format Always Quotes @ Signs

The @ symbol is used as a field delimiter in RCS files, which means that if one appears in
the text of a file or in a log message, it must be quoted (otherwise, CVS would incorrectly
interpret it as marking the end of that field). It is quoted by doubling — that is, CVS always
interprets @@ as "literal @ sign", never as "end of current field". When we committed foo.jpg,
the log message was

"added a random image; ask jrandom@red-bean.com why"
which is stored in foo.jpg,v like this:

1.1

log

Qadded a random image; ask jrandom@@red-bean.com why
e

The @ sign in jrandom@@red-bean.com will be automatically unquoted whenever CVS
retrieves the log message:

floss$ cvs log foo.jpg
RCS file: /usr/local/newrepos/myproj/foo.jpg,v
Working file: foo.jpg
head: 1.1
branch:
locks: strict
access list:
symbolic names:
ANOTHER-TAG: 1.1
some_random_tag: 1.1
keyword substitution: b
total revisions: 1; selected revisions: 1
description:
revision 1.1
date: 1999/06/21 02:56:18; author: jrandom; state: Exp;
added a random image; ask jrandom@red-bean.com why

Repository Administration

floss$
The only reason you should care is that if you ever find yourself hand-editing RCS files
(a rare circumstance, but not unheard of), you must remember to use double @ signs in
revision contents and log messages. If you don’t, the RCS file will be corrupt and will
probably exhibit strange and undesirable behaviors.
Speaking of hand-editing RCS files, don’t be fooled by the permissions in the repository:
floss$ 1s -1

total 6

-r--r--r-- 1 jrandom wusers 410 Jun 20 12:47 README.txt,v
drwxrwxr-x 3 jrandom users 1024 Jun 20 21:56 a-subdir/
drwxrwxr-x 2 jrandom users 1024 Jun 20 21:56 b-subdir/
-r--r--r-- 1 jrandom users 937 Jun 20 21:56 foo.jpg,v
-r--r--r-- 1 jrandom users 564 Jun 20 21:11 hello.c,v
floss$

(For those not fluent in Unix Is output, the —-r—-r—-r-- lines on the left essentially mean
that the files can be read but not changed.) Although the files appear to be read-only for
everyone, the directory permissions must also be taken into account:

floss$ 1s -1d .
drwxrwxr-x 4 jrandom users 1024 Jun 20 22:16 ./
floss$

The myproj/ directory itself — and its subdirectories — are all writeable by the owner
(jrandom) and the group (users). This means that CVS (running as jrandom, or as anyone
in the users group) can create and delete files in those directories, even if it can’t directly
edit files already present. CVS edits an RCS file by making a separate copy of it, so you
should also make all of your changes in a temporary copy, and then replace the existing
RCS file with the new one. (But please don’t ask why the files themselves are read-only —
there are historical reasons for that, having to do with the way RCS works when run as a
standalone program.)

Incidentally, having the files’ group be users is probably not what you want, considering
that the top-level directory of the repository was explicitly assigned group cvs. You can
correct the problem by running this command inside the repository:

floss$ cd /usr/local/newrepos
floss$ chgrp -R cvs myproj

The usual Unix file-creation rules govern which group is assigned to new files that appear
in the repository, so once in a while you may need to run chgrp or chmod on certain files or
directories in the repository (setting the SGID bit with chmod g+s is often a good strategy:
it makes children of a directory inherit the directory’s group ownership, which is usually
what you want in the repository). There are no hard and fast rules about how you should
structure repository permissions; it just depends on who is working on what projects.

What Happens When You Remove A File

When you remove a file from a project, it doesn’t just disappear. CVS must be able to
retrieve such files when you request an old snapshot of the project. Instead, the file gets
put in the Attic, literally:

Open Source Development With CVS

floss$ pwd

/home/jrandom/src/myproj

floss$ 1s /usr/local/newrepos/myproj/

README.txt,v a-subdir/ b-subdir/ foo.jpg,v hello.c,v

floss$ rm foo.jpg

floss$ cvs rm foo.jpg

cvs remove: scheduling ’foo.jpg’ for removal

cvs remove: use ’cvs commit’ to remove this file permanently

floss$ cvs ci -m "Removed foo.jpg" foo.jpg

Removing foo.jpg;

/usr/local/newrepos/myproj/foo.jpg,v <-- foo.jpg

new revision: delete; previous revision: 1.1

done

floss$ cd /usr/local/newrepos/myproj/

floss$ 1s

Attic/ README.txt,v a-subdir/ b-subdir/ hello.c,v

floss$ cd Attic

floss$ 1s

foo.jpg,v

floss$

In each repository directory of a project, the presence of an ‘Attic/’ subdirectory means

that at least one file has been removed from that directory (this means that you shouldn’t
use directories named Attic in your projects). CVS doesn’t merely move the RCS file into
Attic/, however; it also commits a new revision into the file, with a special revision state of
dead. Here’s the relevant section from Attic/foo.jpg,v:

1.2

date 99.06.21.03.38.07; author jrandom; state dead;
branches;

next 1.1;

If the file is later brought back to life, CVS has a way of recording that it was dead at
some point in the past and is now alive again.

This means that if you want to restore a removed file, you can’t just take it out of the
Attic/ and put it back into the project. Instead, you have to do something like this in a
working copy:

floss$ pwd

/home/jrandom/src/myproj

floss$ cvs -Q update -p -r 1.1 foo.jpg > foo.jpg

floss$ 1s

cvs/ README.txt a-subdir/ b-subdir/ foo.jpg hello.c
floss$ cvs add -kb foo.jpg

cvs add: re-adding file foo.jpg (in place of dead revision 1.2)
cvs add: use ’cvs commit’ to add this file permanently

floss$ cvs ci -m "revived jpg image" foo.jpg

Checking in foo.jpg;

/usr/local/newrepos/myproj/foo.jpg,v <-- foo.jpg

new revision: 1.3; previous revision: 1.2

done

floss$ cd /usr/local/newrepos/myproj/

Repository Administration

floss$ 1s

Attic/ a-subdir/ foo.jpg,v
README.txt,v b-subdir/ hello.c,v
floss$ 1s Attic/

floss$

There’s a lot more to know about RCS format, but this is sufficient for a CVS adminstra-
tor to maintain a repository. It’s quite rare to actually edit an RCS file; you’ll usually just
have to tweak file permissions in the repository, at least if my own experience is any guide.
Nevertheless, when CVS starts behaving truly weirdly (rare, but not completely outside
the realm of possibility), you may want to actually look inside the RCS files to figure out
what’s going on.

The CVSROOT/ Administrative Directory

The files in newrepos/CVSROOT/ are not part of any project, but are used to control
CVS’s behavior in the repository. The best way to edit those files is to check out a working
copy of CVSROOT, just like a regular project:

floss$ cvs co CVSROOT
cvs checkout: Updating CVSROOT
CVSROOT/checkoutlist
CVSROOT/commitinfo
CVSROOT/config
CVSROOT/cvswrappers
CVSROOT/editinfo
CVSROOT/loginfo
CVSROOT/modules
CVSROOT/notify
CVSROOT/rcsinfo
CVSROOT/taginfo
CVSROOT/verifymsg
floss$

We'll take the files in their approximate order of importance. Note that each of the
files comes with an explanatory comment at the beginning (the comment convention is the
same across all of them: A # sign at the beginning of the line signifies a comment, and
CVS ignores such lines when parsing the files). Remember that any change you make to
the administrative files in your checked out working copy won’t affect CVS’s behavior until
you commit the changes.

ccdgcgcgccocgcaaag

If you’re extremely security conscious, you may want to arrange the Unix-level permis-
sions on CVSROOT to be different from permissions elsewhere in the repository, in order
to have fine-grained control over who can commit changes to CVSROOT. As you’ll see a
little later, being able to modify the files in CVSROOT essentially gives any CVS user —
even remote ones — the ability to run arbitrary commands on the repository machine.

The config File

The config file allows you to configure certain global behavioral parameters. It follows
a very strict format

Open Source Development With CVS

PARAMETER=VALUE
(etc)

with no extra spaces allowed. For example, here is a possible config file:
SystemAuth=yes

TopLevelAdmin=no
PreservePermissions=no

(An absent entry would be equivalent to no.)

The SystemAuth parameter governs whether CVS should look in the system passwd file
if it fails to find a given username in the CVSROOT /passwd file. CVS distributions are
shipped with this set to no to be conservative about your system’s security.

TopLevelAdmin tells CVS whether to make a sibling CVS/ directory when it checks out
a working copy. This CVS/ directory would not be inside the working copy, but rather next
to it. It might be convenient to turn this on if you tend (and your repository’s users tend)
to check out many different projects from the same repository. Otherwise, you should leave
it off, as it can be disconcerting to see an extra CVS/ directory appear where you don’t
expect it.

PreservePermissions governs whether to preserve file permissions and similar metadata
in the revision history. This is a somewhat obscure feature that probably isn’t worth
describing in detail. See the node Special Files in the Cederqvist if you’re interested (node
is Texinfo-speak for a particular location within an Info document. To go to a node while
reading Info, just type g followed by the name of the node, from anywhere inside the
document).

LockDir is also a rarely used feature. In special circumstances, you may want to tell
CVS to create its lockfiles somewhere other than directly in the project subdirectories, in
order to avoid permission problems. These lockfiles keep CVS from tripping over itself
when multiple operations are performed on the same repository directory simultaneously.
Generally, you never need to worry about them, but sometimes users may have trouble
updating or checking out from a repository directory because they’re unable to create a
lockfile (even on read-only operations, CVS needs to create a lockfile to avoid situations
where it could end up reading while another invocation of CVS is writing). The usual
fix for this is to change repository permissions, but when that’s not feasible, the LockDir
parameter can come in handy.

There are no other parameters at this time, but future versions of CVS may add new
ones; you should always check the Cederqvist or the distribution config file itself for updates.

The modules File

In modules, you can define aliases and alternate groupings for projects in the repository.
The most basic module line is of the form:

MODULE_NAME DIRECTORY_IN_REPOSITORY
for example,

mp myproj

asub myproj/a-subdir

(The paths given on the right are relative to the top of the repository.) This gives
developers an alternate name by which to check out a project or a portion of a project:

Repository Administration

or

floss$ cvs co mp

cvs checkout: Updating mp

U mp/README. txt

U mp/foo.jpg

U mp/hello.c

cvs checkout: Updating mp/a-subdir
U mp/a-subdir/whatever.c

cvs checkout: Updating mp/a-subdir/subsubdir
U mp/a-subdir/subsubdir/fish.c

cvs checkout: Updating mp/b-subdir
U mp/b-subdir/random.c

floss$ cvs -d /usr/local/newrepos/ co asub
cvs checkout: Updating asub

U asub/whatever.c

cvs checkout: Updating asub/subsubdir

U asub/subsubdir/fish.c

Notice how in both cases the module’s name became the name of the directory created for
the working copy. In the case of asub, it didn’t even bother with the intermediate myproj/
directory, but created a top-level asub/ instead, even though it came from myproj/a-subdir
in the repository. Updates, commits, and all other CVS commands will behave normally in

those

working copies — the only thing unusual about them are their names.

By putting file names after the directory name, you can define a module consisting of
just some of the files in a given repository directory. For example

readme myproj README.txt

and

no-readme myproj hello.c foo.jpg

would permit the following checkouts, respectively:

floss$ cvs -q co readme

U readme/README.txt

floss$ cvs -q co no-readme
U no-readme/hello.c

U no-readme/foo.jpg
floss$

You can define a module that will include multiple repository directories by using the -a
(for alias) flag, but note that the directories will get them checked out under their original
names. For example, this line

twoproj -a myproj yourproj

would allow you to do this (assuming that both myproj/ and yourproj/ are in the
repository):

floss$ cvs co twoproj

U myproj/README.txt

U myproj/foo.jpg

U myproj/hello.c

U myproj/a-subdir/whatever.c

Open Source Development With CVS

myproj/a-subdir/subsubdir/fish.c
myproj/b-subdir/random.c

yourproj/README

yourproj/foo.c
yourproj/some-subdir/filel.c
yourproj/some-subdir/file2.c
yourproj/some-subdir/another-subdir/blah.c

cgggcgcaccacga

The name twoproj was a convenient handle to pull in both projects, but it didn’t affect
the names of the working copies. (There is no requirement that alias modules refer to
multiple directories, by the way; we could have omitted twoproj, in which case myproj
would still have been checked out under the name myproj.)

Modules can even refer to other modules, by prefixing them with an ampersand:
mp myproj
asub myproj/a-subdir
twoproj -a myproj yourproj
tp &twoproj
Doing a checkout of tp would have exactly the same result as the checkout of twoproj
did.
There are a few other tricks you can do with modules, most of them less frequently used
than the ones just presented. See the node modules in the Cederqvist for information about
them.

The commitinfo And loginfo And rcsinfo Files

Most of the other administrative files provide programmatic hooks into various parts of
the commit process (for example, the ability to validate log messages or file states before
permitting the commit, or the ability to notify a group of developers whenever a commit
happens in a certain directory of the repository).

The files generally share a common syntax. Each line is of the form:
REGULAR_EXPRESSION PROGRAM_TO_RUN

The regular expression will be tested against the directory into which the commit is
taking place (with the directory name relative to the top of the repository). If it matches,
the designated program will be run. The program will be passed the names of each of the
files in the commit; it can do whatever it likes with those names, including opening up the
files and examining their contents. If the program returns with a nonzero exit status, the
commit is prevented from taking place.

(Regular expressions are a system for concisely describing classes of strings. If you aren’t
familiar with regular expressions, you can get by with the following short summary: foo
would match any file whose name contains the string foo; and foo.*bar would match any
file whose name contains foo, followed by any number of characters, followed by the string
bar. That’s because normal substrings match themselves, but . and * are special. . matches
any character, and * means match any number of the preceding character, including zero.
The ~ and $ signs mean match at the beginning and end of the string, respectively; thus,
~foo.x*bar.*baz$ would match any string beginning with foo, containing bar somewhere
in the middle, and ending with baz. That’s all we’ll go into here; this summary is a very
abbreviated subset of full regular expression syntax.)

Repository Administration

The commitinfo file is for generic hooks you want run on every commit. Here are some
example commitinfo lines:
“a-subdirx* /usr/local/bin/check-asubdir.sh
ou /usr/local/bin/validate-project.pl
So any commit into myproj/a-subdir/ would match the first line, which would then
run the check-asubdir.sh script. A commit in any project whose name (actual reposi-
tory directory name, not necessarily module name) contained the string ou would run the
validate-project.pl script, unless the commit had already matched the previous a-subdir
line.

In place of a regular expression, the word DEFAULT or ALL may be used. The DEFAULT
line (or the first DEFAULT line, if there are more than one) will be run if no regular
expression matches, and each of the ALL lines will be run in addition to any other lines
that may match.

The file names passed to the program do not refer to RCS files — they point to normal
files, whose contents are exactly the same as the working-copy files being committed. The
only unusual aspect is that CVS has them temporarily placed inside the repository, so
they’ll be available to programs running on the machine where the repository is located.

The Ioginfo file is similar to commitinfo, except that instead of acting on the files’
contents, it acts on the log message. The left side of the loginfo file contains regular
expressions, including possibly DEFAULT and ALL lines. The program invoked on the
right side receives the log message on its standard input; it can do whatever it wants with
that input.

The program on the right side can also take an arbitrary number of command-line

arguments. One of those arguments can be a special % code, to be expanded by CVS at
runtime, as follows:

hs - > name(s) of the file(s) being committed
W - > revision number(s) before the commit
v - > revision number(s) after the commit

The expansion always begins with the repository subdirectory (relative to the top of the
repository), followed by the per-file information. For example, if the files committed were
foo, bar, and baz, all in ‘myproj/a-subdir’, then %s would expand into

myproj/a-subdir foo bar baz
whereas %V would expand to show their old revision numbers
myproj/a-subdir 1.7 1.134 1.12
and %v their new revision numbers:
myproj/a-subdir 1.8 1.135 1.13
You can combine % expressions by enclosing them in curly braces following % sign — this

will expand them into a series of comma-separated sublists, each containing the correspond-
ing information for one file in the commit. For instance, %{sv} would expand to

myproj/a-subdir foo,1.8 bar,1.135 baz,1.13
and %{sVv} would expand to
myproj/a-subdir foo0,1.7,1.8 bar,1.134,1.135 baz,1.12,1.13

(You may have to look carefully to distinguish the commas from the periods in those
examples.)

Open Source Development With CVS

Here is a sample loginfo file:
“myproj$ /usr/local/newrepos/CVSRO0T/log.pl -m myproj-devel@foobar.com %s
ou /usr/local/bin/ou-notify.pl %{sv}
DEFAULT /usr/local/bin/default-notify.pl J%{sVv}
In the first line, any commit in the myproj subdirectory of the repository invokes
‘log.pl’, passing it an email address (to which ‘log.pl’ will send a mail containing the log
message), followed by the repository, followed by all the files in the commit.

In the second line, any commit in a repository subdirectory containing the string ou will
invoke the (imaginary) ‘ou-notify.pl’ script, passing it the repository followed by the file
names and new revision numbers of the files in the commit.

The third line invokes the (equally imaginary) ‘default-notify.pl’ script for any com-
mit that didn’t match either of the two previous lines, passing it all possible information
(path to repository, file names, old revisions, and new revisions).

The verifymsg And rcsinfo Files

Sometimes you may just want a program to automatically verify that the log message
conforms to a certain standard and to stop the commit if that standard is not met. This
can be accomplished by using verifymsg, possibly with some help from rcsinfo.

The verifymsg file is the usual combination of regular expressions and programs. The
program receives the log message on standard input; presumably it runs some checks to
verify that the log message meets certain criteria, then it exits with status zero or nonzero.
If the latter, the commit will fail.

Meanwhile, the left side of rcsinfo has the usual regular expressions, but the right side
points to template files instead of programs. A template file might be something like this
Condition:
Fix:
Comments:
or some other collection of fields that a developer is supposed to fill out to form a valid
log message. The template is not very useful if everyone commits using the -m option
explicitly, but many developers prefer not to do that. Instead, they run
floss$ cvs commit

and wait for CVS to automatically fire up a text editor (as specified in the EDITOR
environment variable). There they write a log message, then save the file and exit the
editor, after which CVS continues with the commit.

In that scenario, an rcsinfo template would insert itself into the editor before the user
starts typing, so the fields would be displayed along with a reminder to fill them in. Then
when the user commits, the appropriate program in ‘verifymsg’ is invoked. Presumably,
it will check that the message does follow that format, and its exit status will reflect the
results of its inquiry (with zero meaning success).

As an aid to the verification programs, the path to the template from the rcsinfo file is
appended as the last argument to the program command line in verifymsg; that way, the
program can base its verification process on the template itself, if desired.

Note that when someone checks out a working copy to a remote machine, the appropriate
rcsinfo template file is sent to the client as well (it’s stored in the CVS/ subdirectory of the

Repository Administration

working copy). However, this means that if the rcsinfo file on the server is changed after
that, the client won’t see the changes without re-checking out the project (merely doing an
update won’t work).

Note also that in the verifymsg file, the ALL keyword is not supported (although DE-
FAULT still is). This is to make it easier to override default verification scripts with
subdirectory-specific ones.

The taginfo File

What loginfo does for log messages, taginfo does for tags. The left side of taginfo is
regular expressions, as usual, and the right side is programs. Each program is automatically
handed arguments when CVS tag is invoked, in this order:

arg 1: tag name

arg 2: operation ("add" => tag, "mov" => tag -F, "del" => tag
arg 3: repository

arg 4, 5, etc: file revision [file revision ...]

If the program returns nonzero, the tag is aborted.

We haven’t covered the -F option to tag before now, but it’s exactly what the above
implies: a way to move a tag from one revision to another. For example, if the tag Known_
Working is attached to Revision 1.7 of a file and you want it attached to Revision 1.11
instead, you’d do this

cvs tag -r 1.11 -F Known_Working foo.c

which removes the tag from 1.7, or wherever it was previously in that file, and puts it
at 1.11.

The cvswrappers File

The redundantly-named cvswrappers file gives you a way to specify that certain files
should be treated as binary, based on their file name. CVS does not assume that all .jpg
files are JPG image data, for example, so it doesn’t automatically use -kb when adding JPG
files. Nonetheless, certain projects would find it very useful to simply designate all JPG
files as binary. Here is a line in cvswrappers to do that:

*.jpg -k ’b’
The b is separate and in quotes because it’s not the only possible RCS keyword expansion

mode; one could also specify o, which means not to expand $ sign keywords but to do newline
conversion. However, b is the most common parameter.

There are a few other modes that can be specified from the wrappers file, but they’re for
such rare situations that they’re probably not worth documenting here (translation: your
author has never had to use them). See the node Wrappers in the Cederqvist if you're
curious.

The editinfo File

This file is obsolete, even though it’s still included in distributions. Just ignore it.

Open Source Development With CVS

The notify File

This file is used in conjunction with CVS’s watch features, which are described in [Ad-
vanced CVS], page 95. Nothing about it will make sense until you understand what watches
are (they’re a useful but non-essential feature), so see [Advanced CVS], page 95 for details
about this file and about watches.

The checkoutlist File

If you look inside CVSROOT/, you’ll see that working copies of the files exist side by
side with their RCS revision files:

floss$ 1s /usr/local/newrepos/CVSRO0OT

checkoutlist config,v history notify taginfo
checkoutlist,v cvswrappers loginfo notify,v taginfo,v
commitinfo cvswrappers,v loginfo,v passwd verifymsg
commitinfo,v editinfo modules rcsinfo verifymsg,v
config editinfo,v modules,v rcsinfo,v

floss$

CVS only pays attention to the working versions, not the RCS files, when it’s looking
for guidance on how to behave. Therefore, whenever you commit your working copy of
CVSROOT/ (which might, after all, even be checked out to a different machine), CVS
automatically updates any changed files in the repository itself. You will know that this
has happened because CVS will print a message at the end of such commits:

floss$ cvs ci -m "added mp and asub modules" modules
Checking in modules;
/usr/local/newrepos/CVSRO0T/modules,v <-- modules
new revision: 1.2; previous revision: 1.1

done

cvs commit: Rebuilding administrative file database

CVS automatically knows about the standard administrative files, and will rebuild them
in CVSROOT/ as necessary. If you decide to put custom files in CVSROOT/ (such as
programs or rcsinfo template files), you’ll have to tell CVS explicitly to treat them the
same way.

That’s the purpose of the checkoutlist file. It has a different format from most of the
files we’ve looked at so far

FILENAME ERROR_MESSAGE_IF_FILE_CANNOT_BE_CHECKED_QOUT

for example,
log.pl unable to check out / update log.pl in CVSROOT
bugfix.tmpl unable to check out / update bugfix.tmpl in CVSROOT

Certain files in CVSROOT are traditionally not kept under revision control. One such
is the history file, which keeps a running record of all actions in the repository, for use by
the cvs history command (which lists checkout, update, and tag activity for a given file
or project directory). Incidentally, if you just remove the ‘history’ file, CVS will obligingly
stop keeping that log.

Repository Administration

Note: sometimes the history file is the cause of permission problems, and the easiest way
to solve them is to either make it world-writeable or just remove it.

Another unrevisioned administrative file is passwd, the assumption being that having
it checked out over the network might compromise the passwords (even though they’re
encrypted). You’'ll have to decide based on your own security situation whether you want
to add passwd to checkoutlist or not; by default, it is not in checkoutlist.

Two final notes about the CVSROOT/ directory: It is possible, if you make a big enough
mistake, to commit an administrative file that is broken in such a way as to prevent any
commits from happening at all. If you do that, naturally you won’t be able to commit a fixed
version of the administrative file! The solution is to go in and hand-edit the repository’s
working copy of the administrative file to correct the problem; the whole repository may
stay inaccessible until you do that.

Also, for security’s sake, make sure your CVSROOT/ directory is only writeable by users
you trust (by trust, I mean you trust both their intentions and their ability not to compro-
mise their password). The ‘*info’ files give people the ability to invoke arbitrary programs,
so anyone who can commit or edit files in the CVSROOT/ directory can essentially run any
command on the system. That’s something you should always keep in mind.

Commit Emails

The loginfo file is how one sets up commit emails — automated emails that go out to
everyone working on a project whenever a commit takes place. (It may seem counterintuitive
that this is done in loginfo instead of commitinfo, but the point is that one wants to include
the log message in the email). The program to do the mailing — ‘contrib/log.pl’ in the
CVS source distribution — can be installed anywhere on your system. I customarily put it
in the repository’s CVSROOT/ subdirectory, but that’s just a matter of taste.

You may need to edit ‘log.pl’ a bit to get it to work on your system, possibly changing
the first line to point to your Perl interpreter, and maybe changing this line

$mailcmd = "| Mail -s ’CVS update: $modulepath’";

to invoke your preferred mailer, which may or may not be named Mail. Once you've got
it set the way you like it, you can put lines similar to these into your loginfo:
listerizer CVSROOT/log.pl %s -f CVSROOT/commitlog -m listerizer@red-bean.com
RoadMail CVSROOT/log.pl %s -f CVSROOT/commitlog -m roadmail@red-bean.com
bk/*score CVSROOT/log.pl %s -f CVSROOT/commitlog -m \
bkscore-devel@red-bean.com

The %s expands to the names of the files being committed; the -f option to ‘log.pl’
takes a file name, to which the log message will be appended (so CVSROOT /commitlog
is an ever-growing file of log messages); and the -m flag takes an email address, to which
‘log.pl’ will send a message about the commit. The address is usually a mailing list, but
you can specify the -m option as many times as necessary in one log.pl command line.

Finding Out More

Although this chapter tries to give a complete introduction to installing and adminis-
tering CVS, I've left out things that are either too rarely used to be worth mentioning or

Open Source Development With CVS

already well documented in the Cederqvist manual. The latter category includes setting
up the other remote access methods: RSH/SSH, kserver (Kerberos 4), and GSSAPI (which
includes Kerberos 5, among other things). It should be noted that nothing special needs to
be done for RSH/SSH connections, other than making sure that the user in question can
log into the repository machine using RSH or SSH. If they can and CVS is installed on both
client and server, and they have the right permissions to use the repository directly from
the server machine, then they should be able to access the repository remotely via the :ext:
method.

Descriptions of certain specialized features of CVS have been deferred to later chap-
ters, so they can be introduced in contexts where their usefulness is obvious. General CVS
troubleshooting tips are found in [Tips And Troubleshooting], page 137. Although it’s
not necessary to read the entire Cederqvist manual, you should familiarize yourself with
it; it will be an invaluable reference tool. If for some reason you don’t have Info work-
ing on your machine and don’t want to print the manual, you can browse it online at
http://durak.org/cvswebsites/doc/ or http://www.loria.fr/"molli/cvs/doc/cvs_
toc.html.

Advanced CVS

Advanced CVS

Now that we’ve covered the basic concepts of CVS usage and repository administration,
we’ll look at how CVS can be incorporated into the entire process of development. The
fundamental CVS working cycle — checkout, update, commit, update, commit, and so on
— was demonstrated by the examples in [An Overview of CVS], page 5. This chapter
elaborates on the cycle and discusses how CVS can be used to help developers communicate,
give overviews of project activity and history, isolate and reunite different branches of
development, and automate frequently performed tasks. Some of the techniques covered
introduce new CVS commands, but many merely explain better ways to use commands
that you already know.

Watches (CVS As Telephone)

A major benefit of using CVS on a project is that it can function as a communications
device as well as a record-keeper. This section concentrates on how CVS can be used to
keep participants informed about what’s going on in a project. As is true with other aspects
of CVS, these features reward cooperation. The participants must want to be informed; if
people choose not to use the communications features, there’s nothing CVS can do about
it.

How Watches Work

In its default behavior, CVS treats each working copy as an isolated sandbox. No one
knows what you're doing in your working copy until you commit your changes. In turn, you
don’t know what others are doing in theirs — except via the usual methods of communication,
such as shouting down the hallway, "Hey, I'm going to work on parse.c now. Let me know
if you're editing it so we can avoid conflicts!"

This informality works for projects where people have a general idea of who’s responsible
for what. However, this process can break down when a large number of developers are
active in all parts of a code base and want to avoid conflicts. In such cases, they frequently
have to cross each others’ areas of responsibility but can’t shout down the hallway at each
other because they’re geographically distributed.

A feature of CVS called watches provides developers with a way to notify each other
about who is working on what files at a given time. By "setting a watch" on a file, a
developer can have CVS notify her if anyone else starts to work on that file. The notifications
are normally sent via email, although it is possible to set up other notification methods.

To use watches, you must modify one or two files in the repository administrative area,
and developers must add some extra steps to the usual checkout/update/commit cycle. The
changes on the repository side are fairly simple: You may need to edit the ‘CVSRO0T/notify’
file so that CVS knows how notifications are to be performed. You may also have to add
lines to the ‘CVSRO0T/users’ file, which supplies external email addresses.

On the working copy side, developers have to tell CVS which files they want to watch so
that CVS can send them notifications when someone else starts editing those files. They also
need to tell CVS when they start or stop editing a file, so CVS can send out notifications to
others who may be watching. The following commands are used to implement these extra
steps:

Open Source Development With CVS

cvs watch
cvs edit

cvs unedit

The command watch differs from the usual CVS command pattern in that it requires
further subcommands, such as cvs watch add. .., cvs watch remove. .., and so on.

In the following example, we’ll look at how to turn on watches in the repository and
then how to use watches from the developer’s side. The two example users, jrandom and
gsmith, each have their own separate working copies of the same project; the working copies
may even be on different machines. As usual, all examples assume that the $CVSROOT
environment variable has already been set, so there’s no need to pass -d <KREPOS> to any
CVS commands.

Enabling Watches In The Repository

First, the CVSROOT /notify file must be edited to turn on email notification. One of
the developers can do this, or the repository administrator can if the developers don’t have
permission to change the repository’s administrative files. In any case, the first thing to do
is check out the administrative area and edit the notify file:

floss$ cvs -q co CVSROOT
CVSROOT/checkoutlist
CVSROOT/commitinfo
CVSROOT/config
CVSROOT/cvswrappers
CVSROOT/editinfo
CVSROOT/loginfo
CVSROOT/modules
CVSROOT/notify
CVSROOT/rcsinfo
CVSROOT/taginfo
CVSROOT/verifymsg
floss$ cd CVSROOT
floss$ emacs notify

docgcgocggocgcaaaccag

When you edit the notify file for the first time, you’ll see something like this:

+*

The "notify" file controls where notifications from watches set by
"cvs watch add" or "cvs edit" are sent. The first entry on a line is

a regular expression which is tested against the directory that the
change is being made to, relative to the $CVSROOT. If it matches,

then the remainder of the line is a filter program that should contain
one occurrence of %s for the user to notify, and information on its
standard input.

"ALL" or "DEFAULT" can be used in place of the regular expression.

For example:
ALL mail %s -s "CVS notification"

H o H H HHE HHEH R

Advanced CVS

All you really need to do is uncomment the last line by removing the initial # mark.
Although the notify file provides the same flexible interface as the other administrative
files, with regular expressions matching against directory names, the truth is that you
almost never want to use any of that flexibility. The only reason to have multiple lines,
with each line’s regular expression matching a particular part of the repository, would be if
you wanted to use a different notification method for each project. However, normal email
is a perfectly good notification mechanism, so most projects just use that.

To specify email notification, the line
ALL mail %s -s "CVS notification"

should work on any standard Unix machine. This command causes notifications to
be sent as emails with the subject line CVS notification (the special expression ALL
matches any directory, as usual). Having uncommented that line, commit the notify file so
the repository is aware of the change:

floss$ cvs ci -m "turned on watch notification"

cvs commit: Examining .

Checking in notify;
/usr/local/newrepos/CVSRO0T/notify,v <-- mnotify
new revision: 1.2; previous revision: 1.1

done

cvs commit: Rebuilding administrative file database
floss$

Editing the notify file in this way may be all that you’ll need to do for watches in the
repository. However, if there are remote developers working on the project, you may need
to edit the ‘CVSRO0T/users’ file, too. The purpose of the users file is to tell CVS where to
send email notifications for those users who have external email addresses. The format of
each line in the users file is:

CVS_USERNAME:EMAIL_ADDRESS

For example,
gsmith:quentinsmith@farawayplace.com

The CVS username at the beginning of the line corresponds to a CVS username in
‘CVSRO0T/password’ (if present and the pserver access method is being used), or failing
that, the server-side system username of the person running CVS. Following the colon is an
external email address to which CVS should send watch notifications for that user.

Unfortunately, as of this writing, the users file does not exist in the stock CVS distribu-
tion. Because it’s an administrative file, you must not only create, cvs add, and commit it
in the usual way, but also add it to ‘CVSRO0T/checkoutlist’ so that a checked-out copy is
always maintained in the repository.

Here is a sample session demonstrating this:

floss$ emacs checkoutlist
(add the line for the users file)
floss$ emacs users
(add the line for gsmith)
floss$ cvs add users
floss$ cvs ci -m "added users to checkoutlist, gsmith to users"
cvs commit: Examining .

Open Source Development With CVS

Checking in checkoutlist;
/usr/local/newrepos/CVSRO0T/checkoutlist,v <-- checkoutlist
new revision: 1.2; previous revision: 1.1

done

Checking in users;
/usr/local/newrepos/CVSRO0T/users,v <-- users
new revision: 1.2; previous revision: 1.1

done

cvs commit: Rebuilding administrative file database
floss$

It’s possible to use expanded-format email addresses in ‘CVSRO0T/users’, but you have
to be careful to encapsulate all whitespace within quotes. For example, the following will

work

gsmith:"Quentin Q. Smith <quentinsmith@farawayplace.com>"

or

gsmith:’Quentin Q. Smith <quentinsmith@farawayplace.com>’

However, this will not work:

gsmith:"Quentin Q. Smith" <quentinsmith@farawayplace.com>

When in doubt, you should test by running the command line given in the notify file
manually. Just replace the %s in

mail %s -s "CVS notification"

with what you have following the colon in users. If it works when you run it at a
command prompt, it should work in the users file, too.

When it’s over, the checkout file will look like this:

#

#
#
#
#
#
#
#
#
#
#
#
#

The "checkoutlist" file is used to support additional version controlled
administrative files in $CVSROOT/CVSROOT, such as template files.

The first entry on a line is a filename which will be checked out from
the corresponding RCS file in the $CVSROOT/CVSROOT directory.

The remainder of the line is an error message to use if the file cannot
be checked out.

File format:

[<whitespace>]<filename><whitespace><error message><end-of-line>

comment lines begin with ’#°

users Unable to check out ’users’ file in CVSROOT.
The users file will look like this:

gsmith:quentinsmith@farawayplace.com

Now that the repository is set up for watches, let’s look at what developers need to do
in their working copies.

Advanced CVS

Using Watches In Development

First, a developer checks out a working copy and adds herself to the list of watchers for
one of the files in the project:

floss$ whoami

jrandom

floss$ cvs -q co myproj
myproj/README. txt
myproj/foo.gif
myproj/hello.c
myproj/a-subdir/whatever.c
myproj/a-subdir/subsubdir/fish.c
myproj/b-subdir/random.c
floss$ cd myproj

floss$ cvs watch add hello.c
floss$

The last command, cvs watch add hello.c, tells CVS to notify jrandom if anyone else
starts working on hello.c (that is, it adds jrandom to hello.c’s watch list). For CVS to send
notifications as soon as a file is being edited, the user who is editing it has to announce the
fact by running cvs edit on the file first. CVS has no other way of knowing when someone
starts working on a file. Once checkout is done, CVS isn’t usually invoked until the next
update or commit, which happens after the file has already been edited:

ccccaag

paste$ whoami

gsmith

paste$ cvs -q co myproj
myproj/README. txt
myproj/foo.gif
myproj/hello.c
myproj/a-subdir/whatever.c
myproj/a-subdir/subsubdir/fish.c
myproj/b-subdir/random.c
paste$ cd myproj

paste$ cvs edit hello.c
paste$ emacs hello.c

cgcggcaccgcga

When gsmith runs cvs edit hello.c, CVS looks at the watch list for hello.c, sees that
jrandom is on it, and sends email to jrandom telling her that gsmith has started editing the
file. The email even appears to come from gsmith:

From: gsmith
Subject: CVS notification

To: jrandom
Date: Sat, 17 Jul 1999 22:14:43 -0500

myproj hello.c
Triggered edit watch on /usr/local/newrepos/myproj
By gsmith

100 Open Source Development With CVS

Furthermore, every time that gsmith (or anyone) commits a new revision
myproj hello.c

Triggered commit watch on /usr/local/newrepos/myproj
By gsmith
After receiving these emails, jrandom may want to update hello.c immediately to see

what gsmith has done, or perhaps she’ll email gsmith to find out why he’s working on that
file. Note that nothing forced gsmith to remember to run cvs edit — presumably he did it
because he wanted jrandom to know what he was up to (anyway, even if he forgot to do
cvs edit, his commits would still trigger notifications). The reason to use cvs edit is that it
notifies watchers before you start to work on a file. The watchers can contact you if they
think there may be a conflict, before you’'ve wasted a lot of time.

CVS assumes that anyone who runs cvs edit on a file wants to be added to the file’s
watch list, at least temporarily, in case someone else starts to edit it. When gsmith ran cvs
edit, he became a watcher of hello.c. Both he and jrandom would have received notification
if a third party had run cvs edit on that file (or committed it).

However, CVS also assumes that the person editing the file only wants to be on its watch
list while he or she is editing it. Such users are taken off the watch list when they’re done
editing. If they prefer to be permanent watchers of the file, they would have to run cvs
watch add. CVS makes a default assumption that someone is done editing when he or she
commits a file (until the next time, anyway).

Anyone who gets on a file’s watch list solely by virtue of having run cvs edit on that
file is known as a temporary watcher and is taken off the watch list as soon as she commits
a change to the file. If she wants to edit it again, she has to rerun cvs edit.

CVS’s assumption that the first commit ends the editing session is only a best guess, of
course, because CVS doesn’t know how many commits the person will need to finish their
changes. The guess is probably accurate for one-off changes — changes where someone just
needs to make one quick fix to a file and commit it. For more prolonged editing sessions
involving several commits, users should add themselves permanently to the file’'s watch list:

paste$ cvs watch add hello.c
paste$ cvs edit hello.c
paste$ emacs hello.c

paste$ cvs commit -m "print hello in Sanskrit"

Even after the commit, gsmith remains a watcher of hello.c because he ran watch add
on it. (By the way, gsmith will not receive notification of his own edits; only other watchers
will. CVS is smart enough not to notify you about actions that you took.)

Ending An Editing Session

If you don’t want to commit but want to explicitly end an editing session, you can do
so by running cvs unedit:

paste$ cvs unedit hello.c

But beware! This does more than just notify all watchers that you're done editing — it
also offers to revert any uncommitted changes that you’ve made to the file:

of hello.c, jra

Advanced CVS 101

paste$ cvs unedit hello.c

hello.c has been modified; revert changes? y

paste$

If you answer y, CVS undoes all your changes and notifies watchers that you’re not

editing the file anymore. If you answer n, CVS keeps your changes and also keeps you
registered as an editor of the file (so no notification goes out — in fact, it’s as if you never
ran cvs unedit at all). The possibility of CVS undoing all of your changes at a single
keystroke is a bit scary, but the rationale is easy to understand: If you declare to the world
that you’re ending an editing session, then any changes you haven’t committed are probably
changes you don’t mean to keep. At least, that’s the way CVS sees it. Needless to say, be
careful!

Controlling What Actions Are Watched

By default, watchers are notified about three kinds of action: edits, commits, and unedits.
However, if you only want to be notified about, say, commits, you can restrict notifications
by adjusting your watch with the -a flag (a for action):

floss$ cvs watch add -a commit hello.c

Or if you want to watch edits and commits but don’t care about unedits, you could pass
the -a flag twice:

floss$ cvs watch add -a edit -a commit hello.c

Adding a watch with the -a flag will never cause any of your existing watches to be
removed. If you were watching for all three kinds of actions on hello.c, running

floss$ cvs watch add -a commit hello.c

has no effect — you'll still be a watcher for all three actions. To remove watches, you
should run

floss$ cvs watch remove hello.c

which is similar to add in that, by default, it removes your watches for all three actions.
If you pass -a arguments, it removes only the watches you specify:

floss$ cvs watch remove -a commit hello.c

This means that you want to stop receiving notifications about commits but continue to
receive notifications about edits and unedits (assuming you were watching edits and unedits
to begin with, that is).

There are two special actions you can pass to the -a flag: all or none. The former means
all actions that are eligible for watching (edits, commits, and unedits, as of this writing),
and the latter means none of these. Because CVS’s default behavior, in the absence of -a,
is to watch all actions, and because watching none is the same as removing yourself from
the watch list entirely, it’s hard to imagine a situation in which it would be useful to specify
either of these two special actions. However, cvs edit also takes the -a option, and in this
case, it can be useful to specify all or none. For example, someone working on a file very
briefly may not want to receive any notifications about what other people do with the file.
Thus, this command

paste$ whoami
gsmith
paste$ cvs edit -a none README.txt

102 Open Source Development With CVS

causes watchers of README.txt to be notified that gsmith is about to work on it, but
gsmith would not be added as a temporary watcher of README.txt during his editing
session (which he normally would have been), because he asked not to watch any actions.

Remember that you can only affect your own watches with the cvs watch command.
You may stop watching a certain file yourself, but that won’t change anyone else’s watches.

Finding Out Who Is Watching What

Sometimes you may want to know who’s watching before you even run cvs edit or want
to see who is editing what without adding yourself to any watch lists. Or you may have
forgotten exactly what your own status is. After setting and unsetting a few watches and
committing some files, it’s easy to lose track of what you’re watching and editing.

CVS provides two commands to show who’s watching and who’s editing files — cvs
watchers and cvs editors:

floss$ whoami

jrandom

floss$ cvs watch add hello.c

floss$ cvs watchers hello.c

hello.c jrandom edit unedit commit
floss$ cvs watch remove -a unedit hello.c
floss$ cvs watchers hello.c

hello.c jrandom edit commit

floss$ cvs watch add README.txt

floss$ cvs watchers

README. txt jrandom edit unedit commit
hello.c jrandom edit commit
floss$

Notice that the last cvs watchers command doesn’t specify any files and, therefore, shows
watchers for all files (all those that have watchers, that is).

All of the watch and edit commands have this behavior in common with other CVS
commands. If you specify file names, they act on those files. If you specify directory names,
they act on everything in that directory and its subdirectories. If you don’t specify anything,
they act on the current directory and everything underneath it, to as many levels of depth
as are available. For example (continuing with the same session):

floss$ cvs watch add a-subdir/whatever.c
floss$ cvs watchers

README. txt jrandom edit unedit commit
hello.c jrandom edit commit
a-subdir/whatever.c jrandom edit unedit commit

floss$ cvs watch add
floss$ cvs watchers

README. txt jrandom edit unedit commit

foo.gif jrandom edit unedit commit

hello.c jrandom edit commit wunedit

a-subdir/whatever.c jrandom edit unedit commit
a-subdir/subsubdir/fish.c jrandom edit unedit commit

b-subdir/random.c jrandom edit unedit commit

Advanced CVS 103

floss$

The last two commands made jrandom a watcher of every file in the project and then
showed the watch list for every file in the project, respectively. The output of cvs watchers
doesn’t always line up perfectly in columns because it mixes tab stops with information of
varying length, but the lines are consistently formatted:

[FILENAME] [whitespace] WATCHER [whitespace] ACTIONS-BEING-WATCHED...

Now watch what happens when gsmith starts to edit one of the files:

paste$ cvs edit hello.c
paste$ cvs watchers

README. txt jrandom edit unedit commit
foo.gif jrandom edit unedit commit
hello.c jrandom edit commit wunedit

gsmith tedit tunedit tcommit
a-subdir/whatever.c jrandom edit unedit commit
a-subdir/subsubdir/fish.c jrandom edit unedit commit
b-subdir/random.c jrandom edit unedit commit

The file hello.c has acquired another watcher: gsmith himself (note that the file name is
not repeated but is left as white space at the beginning of the line — this would be important
if you ever wanted to write a program that parses watchers output). Because he’s editing
hello.c, gsmith has a temporary watch on the file; it goes away as soon as he commits a
new revision of hello.c. The prefix t in front of each of the actions indicates that these are
temporary watches. If gsmith adds himself as a regular watcher of hello.c as well

paste$ cvs watch add hello.c

README. txt jrandom edit unedit commit
foo.gif jrandom edit unedit commit
hello.c jrandom edit commit wunedit

gsmith tedit tunedit tcommit edit unedit commit
a-subdir/whatever.c jrandom edit unedit commit
a-subdir/subsubdir/fish.c jrandom edit unedit commit
b-subdir/random.c jrandom edit unedit commit

he is listed as both a temporary watcher and a permanent watcher. You may think that
the permanent watch status would simply override the temporary, so that the line would
look like this:

gsmith edit unedit commit

However, CVS can’t just replace the temporary watches because it doesn’t know in
what order things happen. Will gsmith remove himself from the permanent watch list
before ending his editing session, or will he finish the edits while still remaining a watcher?
If the former, the edit/unedit/commit actions disappear while the tedit/tunedit/tcommit
ones remain; if the latter, the reverse would happen.

Anyway, that side of the watch list is usually not of great concern. Most of the time,
what you want to do is run

floss$ cvs watchers
or

floss$ cvs editors

104 Open Source Development With CVS

from the top level of a project and see who’s doing what. You don’t really need to know
the details of who cares about what actions: the important things are people and files.

Reminding People To Use Watches

You’ve probably noticed that the watch features are utterly dependent on the cooperation
of all the developers. If someone just starts editing a file without first running cvs edit,
no one else will know about it until the changes get committed. Because cvs edit is an
additional step, not part of the normal development routine, people can easily forget to do
it.

Although CVS can’t force someone to use cvs edit, it does have a mechanism for remind-
ing people to do so — the watch on command:

floss$ cvs -q co myproj
myproj/README. txt

myproj/foo.gif

myproj/hello.c
myproj/a-subdir/whatever.c
myproj/a-subdir/subsubdir/fish.c
myproj/b-subdir/random.c

floss$ cd myproj

floss$ cvs watch on hello.c

floss$

By running cvs watch on hello.c, jrandom causes future checkouts of myproj to create
hello.c read-only in the working copy. When gsmith tries to work on it, he’ll discover that
it’s read-only and be reminded to run cvs edit first:

ccoccacgacag

paste$ cvs -q co myproj
myproj/README. txt

myproj/foo.gif

myproj/hello.c
myproj/a-subdir/whatever.c
myproj/a-subdir/subsubdir/fish.c
myproj/b-subdir/random.c

paste$ cd myproj

paste$ 1s -1

cgcgcgcacag

total 6

drwxr-xr-x 2 gsmith users 1024 Jul 19 01:06 CVS/
-rw-r--r-- 1 gsmith users 38 Jul 12 11:28 README.txt
drwxr-xr-x 4 gsmith users 1024 Jul 19 01:06 a-subdir/
drwxr-xr-x 3 gsmith users 1024 Jul 19 01:06 b-subdir/
-rw-r--r-- 1 gsmith users 673 Jun 20 22:47 foo.gif
-r--r--r-- 1 gsmith users 188 Jul 18 01:20 hello.c
paste$

When he does so, the file becomes read-write. He can then edit it, and when he commits,
it becomes read-only again:
paste$ cvs edit hello.c

paste$ 1s -1 hello.c
-rw-r--r-- 1 gsmith users 188 Jul 18 01:20 hello.c

Advanced CVS 105

paste$ emacs hello.c

paste$ cvs commit -m "say hello in Aramaic" hello.c
Checking in hello.c;
/usr/local/newrepos/myproj/hello.c,v <-- hello.c
new revision: 1.12; previous revision: 1.11

done

paste$ 1s -1 hello.c

-r--r--r-- 1 gsmith users 210 Jul 19 01:12 hello.c
paste$

His edit and commit will send notification to all watchers of hello.c. Note that jrandom
isn’t necessarily one of them. By running cvs watch on hello.c, jrandom did not add herself
to the watch list for that file; she merely specified that it should be checked out read-only.
People who want to watch a file must remember to add themselves to its watch list — CVS
cannot help them with that.

Turning on watches for a single file may be the exception. Generally, it’s more common
to turn on watches project-wide:

floss$ cvs -q co myproj
myproj/README. txt

myproj/foo.gif

myproj/hello.c
myproj/a-subdir/whatever.c
myproj/a-subdir/subsubdir/fish.c
myproj/b-subdir/random.c

floss$ cd myproj

floss$ cvs watch on

floss$

cdcaoacacgccaga

This action amounts to announcing a policy decision for the entire project: "Please use
cvs edit to tell watchers what you're working on, and feel free to watch any file you're
interested in or responsible for." Every file in the project will be checked out read-only,
and thus people will be reminded that they’re expected to use cvs edit before working on
anything.

Curiously, although checkouts of watched files make them read-only, updates do not. If
gsmith had checked out his working copy before jrandom ran cvs watch on, his files would
have stayed read-write, remaining so even after updates. However, any file he commits after
jrandom turns watching on will become read-only. If jrandom turns off watches

floss$ cvs watch off

gsmith’s read-only files do not magically become read-write. On the other hand, after
he commits one, it will not revert to read-only again (as it would have if watches were still
on).
It’s worth noting that gsmith could, were he truly devious, make files in his working
copy writeable by using the standard Unix chmod command, bypassing cvs edit entirely
paste$ chmod u+w hello.c
or if he wanted to get everything in one fell swoop:
paste$ chmod -R u+w .

106 Open Source Development With CVS

There is nothing CVS can do about this. Working copies by their nature are private
sandboxes — the watch features can open them up to public scrutiny a little bit, but only
as far as the developer permits. Only when a developer does something that affects the
repository (such as commits) is her privacy unconditionally lost.

The relationship among watch add, watch remove, watch on, and watch off probably
seems a bit confusing. It may help to summarize the overall scheme: add and remove are
about adding or removing users from a file’s watch list; they don’t have anything to do
with whether files are read-only on checkout or after commits. on and off are only about
file permissions. They don’t have anything to do with who is on a file’s watch list; rather,
they are tools to help remind developers of the watch policy by causing working-copy files
to become read-only.

All of this may seem a little inconsistent. In a sense, using watches works against the
grain of CVS. It deviates from the idealized universe of multiple developers editing freely in
their working copies, hidden from each other until they choose to commit. With watches,
CVS gives developers convenient shortcuts for informing each other of what’s going on in
their working copies; however, it has no way to enforce observation policies, nor does it
have a definitive concept of what constitutes an editing session. Nevertheless, watches can
be helpful in certain circumstances if developers work with them.

What Watches Look Like In The Repository

In the interests of stamping out black boxes and needless mystery, let’s take a quick look
at how watches are implemented in the repository. We’ll only take a quick look, though,
because it’s not pretty.

When you set a watch

floss$ pwd

/home/jrandom/myproj

floss$ cvs watch add hello.c

floss$ cvs watchers

hello.c jrandom edit unedit commit
floss$

CVS records it in the special file, ‘CVS/fileattr’, in the appropriate repository subdi-
rectory:

floss$ cd /usr/local/newrepos
floss$ 1s

CVSROOT/ myproj/

floss$ cd myproj

floss$ 1s

cvs/ a-subdir/ foo.gif,v

README.txt,v b-subdir/ hello.c,v

floss$ cd CVS

floss$ 1s

fileattr

floss$ cat fileattr

Fhello.c _watchers=jrandom>edit+unedit+commit

floss$

Advanced CVS 107

The fact that fileattr is stored in a CVS subdirectory in the repository does not mean
that the repository has become a working copy. It’s simply that the name CVS was already
reserved for bookkeeping in the working copy, so CVS can be sure no project will ever need
a subdirectory of that name in the repository.

I won’t describe the format of ‘fileattr’ formally; you can probably grok it pretty well
just by watching it change from command to command:

floss$ cvs watch add hello.c

floss$ cat /usr/local/newrepos/myproj/CVS/fileattr
Fhello.c _watchers=jrandom>edit+unedit+commit
floss$ cvs watch add README.txt

floss$ cat /usr/local/newrepos/myproj/CVS/fileattr
Fhello.c _watchers=jrandom>edit+unedit+commit
FREADME. txt _watchers=jrandom>edit+unedit+commit
floss$ cvs watch on hello.c

floss$ cat /usr/local/newrepos/myproj/CVS/fileattr
Fhello.c _watchers=jrandom>edit+unedit+commit;_watched=
FREADME. txt _watchers=jrandom>edit+unedit+commit
floss$ cvs watch remove hello.c

floss$ cat /usr/local/newrepos/myproj/CVS/fileattr
Fhello.c _watched=

FREADME. txt _watchers=jrandom>edit+unedit+commit
floss$ cvs watch off hello.c

floss$ cat /usr/local/newrepos/myproj/CVS/fileattr
FREADME. txt _watchers=jrandom>edit+unedit+commit
floss$

Edit records are stored in fileattr, too. Here’s what happens when gsmith adds himself
as an editor:

paste$ cvs edit hello.c

floss$ cat /usr/local/newrepos/myproj/CVS/fileattr

Fhello.c _watched=;_editors=gqsmith>Tue Jul 20 04:53:23 1999 GMT+floss\
+/home/qgsmith/myproj; _watchers=gsmith>tedit+tunedit+tcommit
FREADME. txt _watchers=jrandom>edit+unedit+commit

Finally, note that CVS removes fileattr and the CVS subdirectory when there are no
more watchers or editors for any of the files in that directory:

paste$ cvs unedit

floss$ cvs watch off

floss$ cvs watch remove

floss$ cat /usr/local/newrepos/myproj/CVS/fileattr

cat: /usr/local/newrepos/myproj/CVS/fileattr: No such file or directory
floss$

It should be clear after this brief exposure that the details of parsing fileattr format are
better left to CVS. The main reason to have a basic understanding of the format — aside
from the inherent satisfaction of knowing what’s going on behind the curtain — is if you
try to write an extension to the CVS watch features or debug some problem in them. It’s
sufficient to know that you shouldn’t be alarmed if you see CVS/ subdirectories popping

108 Open Source Development With CVS

up in your repository. They’re the only safe place CVS has to store meta-information such
as watch lists.

Log Messages And Commit Emails

Commit emails are notices sent out at commit time, showing the log message and files
involved in the commit. They usually go to all project participants and sometimes to other
interested parties. The details of setting up commit emails were covered in [Repository
Administration], page 63, so I won’t repeat them here. I have noticed, however, that
commit emails can sometimes result in unexpected side effects to projects, effects that you
may want to take into account if you set up commit emails for your project.

First, be prepared for the messages to be mostly ignored. Whether people read them
depends, at least partly, on the frequency of commits in your project. Do developers tend
to commit one big change at the end of the day, or many small changes throughout the day?
The closer your project is to the latter, the thicker the barrage of tiny commit notices raining
down on the developers all day long, and the less inclined they will be to pay attention to
each message.

This doesn’t mean the notices aren’t useful, just that you shouldn’t count on every
person reading every message. It’s still a convenient way for people to keep tabs on who’s
doing what (without the intrusiveness of watches). When the emails go to a publicly
subscribable mailing list, they are a wonderful mechanism for giving interested users (and
future developers!) a chance to see what happens in the code on a daily basis.

You may want to consider having a designated developer who watches all log messages
and has an overview of activity across the entire project (of course, a good project leader will
probably be doing this anyway). If there are clear divisions of responsibility — say, certain
developers are "in charge of" certain subdirectories of the project — you could do some fancy
scripting in CVSROOT /loginfo to see that each responsible party receives specially marked
notices of changes made in their area. This will help ensure that the developers will at least
read the email that pertains to their subdirectories.

A more interesting side effect happens when commit emails aren’t ignored. People start
to use them as a realtime communications method. Here’s the kind of log message that can
result:

Finished feedback form; fixed the fonts and background colors on the
home page. Whew! Anyone want to go to Mon Lung for lunch?

There’s nothing wrong with this, and it makes the logs more fun to read over later.
However, people need to be aware that log messages, such as the following, are not only
distributed by email but is also preserved forever in the project’s history. For example,
griping about customer specifications is a frequent pastime among programmers; it’s not
hard to imagine someone committing a log message like this one, knowing that the other
programmers will soon see it in their email:

Truncate four-digit years to two-digits in input. What the customer
wants, the customer gets, no matter how silly & wrong. Sigh.

This makes for an amusing email, but what happens if the customer reviews the logs
someday? (I’ll bet similar concerns have led more than one site to set up CVSROOT /loginfo
so that it invokes scripts to guard against offensive words in log messages!)

Advanced CVS 109

The overall effect of commit emails seems to be that people become less willing to write
short or obscure log messages, which is probably a good thing. However, they may need to
be reminded that their audience is anyone who might ever read the logs, not just the people
receiving commit emails.

Changing A Log Message After Commit

Just in case someone does commit a regrettable log message, CVS enables you to rewrite
logs after they’ve been committed. It’s done with the -m option to the admin command
(this command is covered in more detail later in this chapter) and allows you to change one
log message (per revision, per file) at a time. Here’s how it works:
floss$ cvs admin -m 1.7:"Truncate four-digit years to two in input." date.c
RCS file: /usr/local/newrepos/someproj/date.c,v
done
floss$

The original, offensive log message that was committed with revision 1.7 has been re-
placed with a perfectly innocent — albeit duller — message. Don’t forget the colon separating
the revision number from the new log message.

If the new log message consists of multiple lines, put it in a file and do this:
floss$ cvs admin -m 1.7:"‘cat new-log-message.txt‘" date.c

(This example was sent in by Peter Ross <peter.ross@miscrit.be>; note that it only works
for Unix users.)

If the bad message was committed into multiple files, you’ll have to run cvs admin

separately for each one, because the revision number is different for each file. Therefore,
this is one of the few commands in CVS that requires you to pass a single file name as
argument:

floss$ cvs admin -m 1.2:"very boring log message" hello.c README.txt foo.gif

cvs admin: while processing more than one file:

cvs [admin aborted]: attempt to specify a numeric revision

floss$

Confusingly, you get the same error if you pass no file names (because CVS then assumes
all the files in the current directory and below are implied arguments):
floss$ cvs admin -m 1.2:"very boring log message"
cvs admin: while processing more than one file:

cvs [admin aborted]: attempt to specify a numeric revision
floss$

(As is unfortunately often the case with CVS error messages, you have to see things from
CVS’s point of view before the message makes sense!)

Invoking admin -m actually changes the project’s history, so use it with care. There will
be no record that the log message was ever changed — it will simply appear as if that revision
had been originally committed with the new log message. No trace of the old message will
be left anywhere (unless you saved the original commit email).

Although its name might seem to imply that only the designated CVS administrator can
use it, in fact anyone can run cvs admin, as long as they have write access to the project
in question. Nevertheless, it is best used with caution; the ability to change log messages

110 Open Source Development With CVS

is mild compared with other potentially damaging things it can do. See [CVS Reference],
page 151 for more about admin, as well as a way to restrict its use.

Getting Rid Of A Working Copy

In typical CVS usage, the way to get rid of a working copy directory tree is to remove
it like any other directory tree:
paste$ rm -rf myproj
However, if you eliminate your working copy this way, other developers will not know
that you have stopped using it. CVS provides a command to relinquish a working copy
explicitly. Think of release as the opposite of checkout — you’re telling the repository that
you're done with the working copy now. Like checkout, release is invoked from the parent
directory of the tree:
paste$ pwd
/home/qsmith/myproj
paste$ cd ..
paste$ 1s
myproj
paste$ cvs release myproj
You have [0] altered files in this repository.
Are you sure you want to release directory ’myproj’: y
paste$
If there are any uncommitted changes in the repository, the release fails, meaning that it
just lists the modified files and otherwise has no effect. Assuming the tree is clean (totally
up to date), release records in the repository that the working copy has been released.

You can also have release automatically delete the working tree for you, by passing the
-d flag:
paste$ 1s
myproj
paste$ cvs release -d myproj
You have [0] altered files in this repository.
Are you sure you want to release (and delete) directory ’myproj: y
paste$ 1s
paste$
As of CVS version 1.10.6, the release command is not able to deduce the repository’s
location by examining the working copy (this is because release is invoked from above the
working copy, not within it). You must pass the -d <REP0S> global option or make sure that
your CVSROOT environment variable is set correctly. (This bug may be fixed in future
versions of CVS.)

The Cederqvist claims that if you use release instead of just deleting the working tree,
people with watches set on the released files will be notified just as if you had run unedit.
However, I tried to verify this experimentally, and it does not seem to be true.

History — A Summary Of Repository Activity

In [Repository Administration], page 63, I briefly mentioned the cvs history command.
This command displays a summary of all checkouts, commits, updates, rtags, and releases

Advanced CVS 111

done in the repository (at least, since logging was enabled by the creation of the CVS-
ROOT/history file in the repository). You can control the format and contents of the
summary with various options.

The first step is to make sure that logging is enabled in your repository. The repository
administrator should first make sure there is a history file

floss$ cd /usr/local/newrepos/CVSROOT
floss$ 1s -1 history

1s: history: No such file or directory
floss$

and if there isn’t one, create it, as follows:

floss$ touch history

floss$ 1s -1 history

-rw-r--r-- 1 jrandom cvs 0 Jul 22 14:57 history
floss$

This history file also needs to be writeable by everyone who uses the repository, otherwise
they’ll get an error every time they try to run a CVS command that modifies that file. The
easiest way is simply to make the file world-writeable:

floss$ chmod a+rw history

floss$ 1s -1 history

-rw-rw-rw- 1 jrandom cvs 0 Jul 22 14:57 history
floss$

If the repository was created with the cvs init command, the history file already exists.
You may still have to fix its permissions, however.

The rest of these examples assume that history logging has been enabled for a while, so
that data has had time to accumulate in the history file.

The output of cvs history is somewhat terse (it’s probably intended to be parsed by
programs rather than humans, although it is readable with a little study). Let’s run it once
and see what we get:

paste$ pwd

/home/qgsmith/myproj

paste$ cvs history -e -a

0 07/25 15:14 +0000 gsmith myproj =mp= ~/*

M 07/25 15:16 +0000 gsmith 1.14 hello.c myproj == ~/mp

U 07/25 15:21 +0000 gsmith 1.14 README.txt myproj == ~/mp

G 07/25 15:21 +0000 gsmith 1.15 hello.c myproj == ~/mp

A 07/25 15:22 +0000 gsmith 1.1 goodbye.c myproj == ~/mp

M 07/25 15:23 +0000 gsmith 1.16 hello.c myproj == ~/mp

M 07/25 15:26 +0000 gsmith 1.17 hello.c myproj == ~/mp

U 07/25 15:29 +0000 gsmith 1.2 goodbye.c myproj == "/mp

G 07/25 15:29 +0000 gsmith 1.18 hello.c myproj == ~/mp

M 07/25 15:30 +0000 gsmith 1.19 hello.c myproj == ~/mp

0 07/23 03:45 +0000 jrandom myproj =myproj= ~/src/*

F 07/23 03:48 +0000 jrandom =myproj= ~/src/*

F 07/23 04:06 +0000 jrandom =myproj= ~/src/*

M 07/25 15:12 +0000 jrandom 1.13 README.txt myproj == ~/src/myproj
U 07/25 15:17 +0000 jrandom 1.14 hello.c myproj == ~/src/myproj

112 Open Source Development With CVS

M 07/25 15:18 +0000 jrandom 1.14 README.txt myproj == ~/src/myproj
M 07/25 15:18 +0000 jrandom 1.15 hello.c myproj == ~/src/myproj
U 07/25 15:23 +0000 jrandom 1.1 goodbye.c myproj == ~/src/myproj
U 07/25 15:23 +0000 jrandom 1.16 hello.c myproj == ~/src/myproj
U 07/25 15:26 +0000 jrandom 1.1 goodbye.c myproj == “/src/myproj
G 07/25 15:26 +0000 jrandom 1.17 hello.c myproj == ~/src/myproj
M 07/25 15:27 +0000 jrandom 1.18 hello.c myproj == ~/src/myproj
C 07/25 15:30 +0000 jrandom 1.19 hello.c myproj == ~/src/myproj
M 07/25 15:31 +0000 jrandom 1.20 hello.c myproj == ~/src/myproj
M 07/25 16:29 +0000 jrandom 1.3 whatever.c myproj/a-subdir == ~/src/myproj

paste$
There, isn’t that clear?

Before we examine the output, notice that the invocation included two options: -e and
-a. When you run history, you almost always want to pass options telling it what data to
report and how to report it. In this respect, it differs from most other CVS commands,
which usually do something useful when invoked without any options. In this example, the
two flags meant "everything" (show every kind of event that happened) and "all" (for all
users), respectively.

Another way that history differs from other commands is that, although it is usually
invoked from within a working copy, it does not restrict its output to that working copy’s
project. Instead, it shows all history events from all projects in the repository — the working
copy merely serves to tell CVS from which repository to retrieve the history data. (In the
preceding example, the only history data in that repository is for the myproj project, so
that’s all we see.)

The general format of the output is:
CODE DATE USER [REVISION] [FILE] PATH_IN_REPOSITORY ACTUAL_WORKING_COPY_NAME
The code letters refer to various CVS operations, as shown in Table 6.1.

For operations (such as checkout) that are about the project as a whole rather than
about individual files, the revision and file are omitted, and the repository path is placed
between the equal signs.

Although the output of the history command was designed to be compact, parseable
input for other programs, CVS still gives you a lot of control over its scope and content.
The options shown in Table 6.2 control what types of events get reported.

Table 6.1 The meaning of the code letters.

Letter Meaning

0 Checkout

T Tag

F Release

W Update (no user file, remove from entries file)

U Update (file overwrote unmodified user file)

G Update (file was merged successfully into modified user file)
C Update (file was merged, but conflicts w/ modified user file)
M Commit (from modified file)

A Commit (an added file)

Advanced CVS 113

R Commit (the removal of a file)
E Export

Table 6.2 Options to filter by event type.

Option Meaning

-m MODULE Show historical events affecting MODULE.

-c Show commit events.

-o Show checkout events.

-T Show tag events.

-x CODE(S) Show all events of type CODE (one or more of OTFWUGCMARE).

-e Show all types of events, period. Once you have
selected what type of events you want reported, you can
filter further with the options shown in Table 6.3.

Table 6.3 Options to filter by user.

Option Meaning

-a Show actions taken by all users

-w Show only actions taken from within this working copy
-1 Show only the last time this user took the action

-u USER Show records for USER

Annotations — A Detailed View Of Project Activity

The annotate Command

If the history command gives an overview of project activity, the annotate command is
a way of attaching a zoom lens to the view. With annotate, you can see who was the last
person to touch each line of a file, and at what revision they touched it:

floss$ cvs annotate
Annotations for README.txt

sk ok Kok ook oK ok o K o

1.14 (jrandom 25-Jul-99): blah

1.13 (jrandom 25-Jul-99): test 3 for history
1.12 (gsmith 19-Jul-99): test 2

1.11 (gsmith 19-Jul-99): test

1.10 (jrandom 12-Jul-99): blah

1.1 (jrandom 20-Jun-99): Just a test project.
1.4 (jrandom 21-Jun-99): yeah.

1.5 (jrandom 21-Jun-99): nope.

Annotations for hello.c

sk Kok Kok ook ook ok o K o

1.1 (jrandom 20-Jun-99): #include <stdio.h>
1.1 (jrandom 20-Jun-99):

1.1 (jrandom 20-Jun-99): void

1.1 (jrandom 20-Jun-99): main ()

114

1.1 (jrandom 20-Jun-99):
1.15 (jrandom 25-Jul-99):
1.13 (gsmith 19-Jul-99):
1.10 (jrandom 12-Jul-99):
1.21 (jrandom 25-Jul-99):
1.3 (jrandom 21-Jun-99):
1.4 (jrandom 21-Jun-99):
1.11 (gsmith 18-Jul-99):
1.16 (gsmith 25-Jul-99):
1.18 (jrandom 25-Jul-99):
1.2 (jrandom 21-Jun-99):
1.1 (jrandom 20-Jun-99):

Annotations for a-subdir/whatever.c
sk ok ok ok sk ok ok ok ok sk ok ok ok ok ok

}

Open Source Development With CVS

/* another test for history */

/* random change number two */

/* test */

printf ("Hellooo, world!\n");
printf ("hmmm\n");

printf ("double hmmm\n");

/* added this comment */

/* will merge these changes */

/* will merge these changes too */
printf ("Goodbye, world!\n");

: /* A completely non-empty C file. */

1.3 (jrandom 25-Jul-99)
Annotations for a-subdir/subsubdir/fish.c
s ks s s s ke ok sk sk sk s sk ok

1.2

Annotations for b-subdir/random.c
ok sk ok sk ok ok ok ok ok ok ok ok ok ok ok

1.1
floss$

(jrandom 25-Jul-99): /* An almost completely empty C file.

(jrandom 20-Jun-99): /* A completely empty C file. */

The output of annotate is pretty intuitive. On the left are the revision number, developer,
and date on which the line in question was added or last modified. On the right is the line
itself, as of the current revision. Because every line is annotated, you can actually see the
entire contents of the file, pushed over to the right by the annotation information.

If you specify a revision number or tag, the annotations are given as of that revision,
meaning that it shows the most recent modification to each line at or before that revision.
This is probably the most common way to use annotations — examining a particular revision
of a single file to determine which developers were active in which parts of the file.

For example, in the output of the previous example, you can see that the most recent
revision of hello.c is 1.21, in which jrandom did something to the line:

printf ("Hellooo, world!\n");

One way to find out what she did is to diff that revision against the previous one:

floss$ cvs diff -r 1.20 -r 1.21 hello.c

Index: hello.c

RCS file: /usr/local/newrepos/myproj/hello.c,v

retrieving revision 1.20
retrieving revision 1.21

diff -r1.20 -r1.21

9¢9

< printf ("Hello, world!\n");

> printf ("Hellooo, world!\n");
floss$

*/

Advanced CVS

115

Another way to find out, while still retaining a file-wide view of everyone’s activity, is
to compare the current annotations with the annotations from a previous revision:

floss$ cvs annotate -r 1.20 hello.c

Annotations for hello.c

sk Kok ok ook ok K ok ok
1.1 (jrandom
1.1 (jrandom
1.1 (jrandom
1.1 (jrandom
1.1 (jrandom
1.15 (jrandom
1.13 (gsmith
1.10 (jrandom
1.1 (jrandom
1.3 (jrandom
1.4 (jrandom
1.11 (gsmith
1.16 (gsmith
1.18 (jrandom
1.2 (jrandom
1.1 (jrandom
floss$

20-Jun-99) :
20-Jun-99) :
20-Jun-99):
20-Jun-99):
20-Jun-99) :
25-Jul-99):
19-Jul-99) :
12-Jul-99) :
20-Jun-99) :
21-Jun-99):
21-Jun-99) :
18-Jul-99) :
25-Jul-99):
25-Jul-99):
21-Jun-99) :
20-Jun-99) :

#include <stdio.h>

void

main ()

{
/* another test for history */
/* random change number two */
/* test */
printf ("Hello, world!\n");
printf ("hmmm\n");
printf ("double hmmm\n");
/* added this comment */
/* will merge these changes */
/* will merge these changes too */
printf ("Goodbye, world!\n");

Although the diff reveals the textual facts of the change more concisely, the annotation
may be preferable because it places them in their historical context by showing how long
the previous incarnation of the line had been present (in this case, all the way since revision
1.1). That knowledge can help you decide whether to look at the logs to find out the
motivation for the change:

floss$ cvs log -r 1.21 hello.c

RCS file: /usr/local/newrepos/myproj/hello.c,v
Working file: hello.c

head: 1.21
branch:
locks:
access list:

symbolic names:

random-tag: 1.20

1.1.1.1

jrandom: 1.1.1

keyword substitution: kv
total revisions: 22;

description:

selected revisions: 1

revision 1.21
date: 1999/07/25 20:17:42;
say hello with renewed enthusiasm

author: jrandom;

state: Exp; lines: +1 -1

floss$

In addition to -r, you can also filter annotations using the -D DATE option:

116 Open Source Development With CVS

floss$ cvs annotate -D "5 weeks ago" hello.c
Annotations for hello.c

sk s s ok ke sk sk sk s s ok

.1 (jrandom 20-Jun-99): #include <stdio.h>
(jrandom 20-Jun-99):

(jrandom 20-Jun-99): void

(jrandom 20-Jun-99): main ()

(jrandom 20-Jun-99): {

(jrandom 20-Jun-99): printf ("Hello, world!\n");
1.1 (jrandom 20-Jun-99): }

floss$ cvs annotate -D "3 weeks ago" hello.c
Annotations for hello.c

sk o o ok ok sk ok sk s o sk ok

N e
A

1.1 (jrandom 20-Jun-99): #include <stdio.h>

1.1 (jrandom 20-Jun-99):

1.1 (jrandom 20-Jun-99): void

1.1 (jrandom 20-Jun-99): main ()

1.1 (jrandom 20-Jun-99): {

1.1 (jrandom 20-Jun-99): printf ("Hello, world!\n");
1.3 (jrandom 21-Jun-99): printf ("hmmm\n");

1.4 (jrandom 21-Jun-99): printf ("double hmmm\n");
1.2 (jrandom 21-Jun-99): printf ("Goodbye, world!\n");
1.1 (jrandom 20-Jun-99): }

floss$

Annotations And Branches

By default, annotation always shows activity on the main trunk of development. Even
when invoked from a branch working copy, it shows annotations for the trunk unless you
specify otherwise. (This tendency to favor the trunk is either a bug or a feature, depending
on your point of view.) You can force CVS to annotate a branch by passing the branch
tag as an argument to -r. Here is an example from a working copy in which hello.c is on a
branch named Brancho_Gratuito, with at least one change committed on that branch:

floss$ cvs status hello.c

File: hello.c Status: Up-to-date
Working revision: 1.10.2.2 Sun Jul 25 21:29:05 1999
Repository revision: 1.10.2.2 /usr/local/newrepos/myproj/hello.c,v
Sticky Tag: Brancho_Gratuito (branch: 1.10.2)
Sticky Date: (none)
Sticky Options: (none)

floss$ cvs annotate hello.c
Annotations for hello.c

Aok K KKK ok Ko K
1.1 (jrandom 20-Jun-99): #include <stdio.h>
1.1 (jrandom 20-Jun-99):

1.1 (jrandom 20-Jun-99): void

Advanced CVS

(jrandom 20-Jun-99): main ()
(jrandom 20-Jun-99): {
0 (jrandom 12-Jul-99): /* test */
(jrandom 20-Jun-99): printf ("Hello, world!\n");
(jrandom 21-Jun-99): printf ("hmmm\n");
(jrandom 21-Jun-99): printf ("double hmmm\n");
(jrandom 21-Jun-99): printf ("Goodbye, world!\n");
1.1 (jrandom 20-Jun-99): }
floss$ cvs annotate -r Brancho_Gratuito hello.c
Annotations for hello.c

e e e
N D WERE PR

sk Kok Kok ook oK oK o K o
1.1 (jrandom 20-Jun-99): #include <stdio.h>

1.1 (jrandom 20-Jun-99):

1.1 (jrandom 20-Jun-99): void

1.1 (jrandom 20-Jun-99): main ()

1.1 (jrandom 20-Jun-99): {

1.10 (jrandom 12-Jul-99): /* test */

1.1 (jrandom 20-Jun-99): printf ("Hello, world!\n");
1.10.2.2 (jrandom 25-Jul-99): printf ("hmmmmm\n") ;

1.4 (jrandom 21-Jun-99): printf ("double hmmm\n");
1.10.2.1 (jrandom 25-Jul-99): printf ("added this line");
1.2 (jrandom 21-Jun-99): printf ("Goodbye, world!\n");
1.1 (jrandom 20-Jun-99): }

floss$
You can also pass the branch number itself:

floss$ cvs annotate -r 1.10.2 hello.c
Annotations for hello.c
sk ke e e o sk sk sk ok ok e s ok sk ok

1.1 (jrandom 20-Jun-99): #include <stdio.h>

1.1 (jrandom 20-Jun-99):

1.1 (jrandom 20-Jun-99): void

1.1 (jrandom 20-Jun-99): main ()

1.1 (jrandom 20-Jun-99): {

1.10 (jrandom 12-Jul-99): /* test */

1.1 (jrandom 20-Jun-99): printf ("Hello, world!\n");
1.10.2.2 (jrandom 25-Jul-99): printf ("hmmmmm\n");

1.4 (jrandom 21-Jun-99): printf ("double hmmm\n");
1.10.2.1 (jrandom 25-Jul-99): printf ("added this line");
1.2 (jrandom 21-Jun-99): printf ("Goodbye, world!\n");
1. (jrandom 20-Jun-99): }

floss$

or a full revision number from the branch:

floss$ cvs annotate -r 1.10.2.1 hello.c
Annotations for hello.c

Aok K KKK oK Ko K
1.1 (jrandom 20-Jun-99): #include <stdio.h>
1.1 (jrandom 20-Jun-99):

1.1 (jrandom 20-Jun-99): void

117

118 Open Source Development With CVS

1.1 (jrandom 20-Jun-99): main ()

1.1 (jrandom 20-Jun-99): {

1.10 (jrandom 12-Jul-99): /* test */

1.1 (jrandom 20-Jun-99): printf ("Hello, world!\n");
1.3 (jrandom 21-Jun-99): printf ("hmmm\n");

1.4 (jrandom 21-Jun-99): printf ("double hmmm\n");
1.10.2.1 (jrandom 25-Jul-99): printf ("added this line");
1.2 (jrandom 21-Jun-99): printf ("Goodbye, world!\n");
1. (jrandom 20-Jun-99): }

floss$

If you do this, remember that the numbers are only valid for that particular file. In
general, it’s probably better to use the branch name wherever possible.

Using Keyword Expansion

You may recall a brief mention of keyword expansion in [An Overview of CVS], page 5.
RCS keywords are special words, surrounded by dollar signs, that CVS looks for in text
files and expands into revision-control information. For example, if a file contains

$Author$

then when updating the file to a given revision, CVS will expand it to the username of
the person who committed that revision:
$Author: jrandom $

CVS is also sensitive to keywords in their expanded form, so that once expanded, they
continue to be updated as appropriate.

Although keywords don’t actually offer any information that’s not available by other
means, they give people a convenient way to see revision control facts embedded in the text
of the file itself, rather than by invoking some arcane CVS operation.

Here are a few other commonly used keywords:

$Date$ ==> date of last commit, expands to ==
$Date: 1999/07/26 06:39:46 $

$1d$ ==> filename, revision, date, and author; expands to ==
$Id: hello.c,v 1.11 1999/07/26 06:39:46 jrandom Exp $

$Revision$ ==> exactly what you think it is, expands to ==
$Revision: 1.11 §

$Source$ ==> path to corresponding repository file, expands to ==
$Source: /usr/local/newrepos/tossproj/hello.c,v $

Log ==> accumulating log messages for the file, expands to ==
$Log: hello.c,v $

Revision 1.2 1999/07/26 06:47:52 jrandom

...and this is the second log message.

Revision 1.1 1999/07/26 06:39:46 jrandom

Advanced CVS 119

This is the first log message...

The Log keyword is the only one of these that expands to cover multiple lines, so
its behavior is unique. Unlike the others, it does not replace the old expansion with the
new one, but instead inserts the latest expansion, plus an additional blank line, right after
the keyword (thereby pushing any previous expansions downward). Furthermore, any text
between the beginning of the line and $Log is used as a prefix for the expansions (this is
done to ensure that the log messages stay commented in program code). For example, if
you put this into the file

// Log

it will expand to something like this on the first commit:

// $Log: hello.c,v $
// Revision 1.14 1999/07/26 07:03:20 jrandom
// this is the first log message...

//

this on the second:

// $Log: hello.c,v $

// Revision 1.15 1999/07/26 07:04:40 jrandom
// ...and this is the second log message...

//

// Revision 1.14 1999/07/26 07:03:20 jrandom
// this is the first log message...

//

and so on:

// $Log: hello.c,v $
// Revision 1.16 1999/07/26 07:05:34 jrandom
// ...and this is the third!

//

// Revision 1.15 1999/07/26 07:04:40 jrandom
// ...and this is the second log message...

//

// Revision 1.14 1999/07/26 07:03:20 jrandom
// this is the first log message...
//

You may not want to keep your entire log history in the file all the time; if you do, you
can always remove the older sections when it starts to get too lengthy. It’s certainly more
convenient than running cvs log, and it may be worthwhile in projects where people must
constantly read over the logs.

A more common technique may be to include $Revision$ in a file and use it as the
version number for the program. This can work if the project consists of essentially one file
or undergoes frequent releases and has at least one file that is guaranteed to be modified
between every release. You can even use an RCS keyword as a value in program code:

VERSION = "$Revision: 1.114 $";
CVS expands that keyword just like any other; it has no concept of the programming

language’s semantics and does not assume that the double quotes protect the string in any
way.

120 Open Source Development With CVS

A complete list of keywords (there are a few more, rather obscure ones) is given in [CVS
Reference], page 151.

Going Out On A Limb (How To Work With Branches And
Survive)

Branches are simultaneously one of the most important and most easily misused features
of CVS. Isolating risky or disruptive changes onto a separate line of development until they
stabilize can be immensely helpful. If not properly managed, however, branches can quickly
propel a project into confusion and cascading chaos, as people lose track of what changes
have been merged when.

Some Principles For Working With Branches

To work successfully with branches, your development group should adhere to these
principles:

Minimize the number of branches active at any one time. The more branches under
development at the same time, the more likely they are to conflict when merged into
the trunk. In practical terms, the way to accomplish this is to merge as frequently as
you can (whenever a branch is at a stable point) and to move development back onto
the trunk as soon as feasible. By minimizing the amount of parallel development going
on, everyone is better able to keep track of what’s going on on each branch, and the
possibility of conflicts on merge is reduced.

This does not mean minimizing the absolute number of branches in the project, just
the number being worked on at any given time.

Minimize the complexity — that is, the depth — of your branching scheme. There are
circumstances in which it’s appropriate to have branches from branches, but they are
very rare (you may get through your entire programming life without ever encountering
one). Just because CVS makes it technically possible to have arbitrary levels of nested
branching, and to merge from any branch to any other branch, doesn’t mean you
actually want to do these things. In most situations, it’s best to have all your branches
rooted at the trunk and to merge from branch to trunk and back out again.

Use consistently named tags to mark all branch and merge events. Ideally, the meaning
of each tag and its relationship to other branches and tags should be apparent from
the tag name. (The point of this will become clearer as we go through the examples.)

With those principles in mind, let’s take a look at a typical branch development scenario.
We’ll have jrandom on the trunk and gsmith on the branch, but note that there could just
as well be multiple developers on the trunk and/or on the branch. Regular development
along either line can involve any number of people; however, the tagging and merging are
best done by one person on each side, as you'll see.

Merging Repeatedly Into The Trunk

Let’s assume gsmith needs to do development on a branch for a while, to avoid destabi-
lizing the trunk that he shares with jrandom. The first step is to create the branch. Notice

Advanced CVS 121

how gsmith creates a regular (non-branch) tag at the branch point first, and then creates
the branch:

paste$ pwd

/home/qgsmith/myproj

paste$ cvs tag Root-of-Exotic_Greetings
cvs tag: Tagging .

T README.txt

T foo.gif

T hello.c

cvs tag: Tagging a-subdir

T a-subdir/whatever.c

cvs tag: Tagging a-subdir/subsubdir
T a-subdir/subsubdir/fish.c

cvs tag: Tagging b-subdir

T b-subdir/random.c

paste$ cvs tag -b Exotic_Greetings-branch
cvs tag: Tagging .

T README.txt

T foo.gif

T hello.c

cvs tag: Tagging a-subdir

T a-subdir/whatever.c

cvs tag: Tagging a-subdir/subsubdir
T a-subdir/subsubdir/fish.c

cvs tag: Tagging b-subdir

T b-subdir/random.c

paste$

The point of tagging the trunk first is that it may be necessary someday to retrieve the
trunk as it was the moment the branch was created. If you ever need to do that, you’ll
have to have a way of referring to the trunk snapshot without referring to the branch itself.
Obviously, you can’t use the branch tag because that would retrieve the branch, not the
revisions in the trunk that form the root of the branch. The only way to do it is to make
a regular tag at the same revisions the branch sprouts from. (Some people stick to this
rule so faithfully that I considered listing it as "Branching Principle Number 4: Always
create a non-branch tag at the branch point." However, many sites don’t do it, and they
generally seem to do okay, so it’s really a matter of taste.) From here on, I will refer to this
non-branch tag as the branch point tag.

Notice also that a naming convention is being adhered to: The branch point tag begins
with Root-of-, then the actual branch name, which uses underscores instead of hyphens to
separate words. When the actual branch is created, its tag ends with the suffix -branch so
that you can identify it as a branch tag just by looking at the tag name. (The branch point
tag Root-of-Exotic_Greetings does not include the -branch because it is not a branch
tag.) You don’t have to use this particular naming convention, of course, but you should
use some convention.

Of course, I'm being extra pedantic here. In smallish projects, where everyone knows
who’s doing what and confusion is easy to recover from, these conventions don’t have to be
used. Whether you use a branch point tag or have a strict naming convention for your tags

122 Open Source Development With CVS

depends on the complexity of the project and the branching scheme. (Also, don’t forget
that you can always go back later and update old tags to use new conventions by retrieving
an old tagged version, adding the new tag, and then deleting the old tag.)

Now, gsmith is ready to start working on the branch:

paste$ cvs update -r Exotic_Greetings-branch
cvs update: Updating .

cvs update: Updating a-subdir

cvs update: Updating a-subdir/subsubdir

cvs update: Updating b-subdir

paste$

He makes some changes to a couple of files and commits them on the branch:
paste$ emacs README.txt a-subdir/whatever.c b-subdir/random.c

paste$ cvs ci -m "print greeting backwards, etc"

cvs commit: Examining .

cvs commit: Examining a-subdir

cvs commit: Examining a-subdir/subsubdir

cvs commit: Examining b-subdir

Checking in README.txt;
/usr/local/newrepos/myproj/README.txt,v <-- README.txt
new revision: 1.14.2.1; previous revision: 1.14

done

Checking in a-subdir/whatever.c;
/usr/local/newrepos/myproj/a-subdir/whatever.c,v <-- whatever.c
new revision: 1.3.2.1; previous revision: 1.3

done

Checking in b-subdir/random.c;
/usr/local/newrepos/myproj/b-subdir/random.c,v <-- random.c
new revision: 1.1.1.1.2.1; previous revision: 1.1.1.1

done

paste$

Meanwhile, jrandom is continuing to work on the trunk. She modifies two of the three
files that gsmith touched. Just for kicks, we’ll have her make changes that conflict with
gsmith’s work:

floss$ emacs README.txt whatever.c

floss$ cvs ci -m "some very stable changes indeed"

cvs commit: Examining .

cvs commit: Examining a-subdir

cvs commit: Examining a-subdir/subsubdir

cvs commit: Examining b-subdir

Checking in README.txt;
/usr/local/newrepos/myproj/README.txt,v <-- README.txt
new revision: 1.15; previous revision: 1.14

done
Checking in a-subdir/whatever.c;
/usr/local/newrepos/myproj/a-subdir/whatever.c,v <-- whatever.c

new revision: 1.4; previous revision: 1.3

Advanced CVS

done
floss$

123

The conflict is not apparent yet, of course, because neither developer has tried to merge

branch and trunk.

Now, jrandom does the merge:

floss$ cvs update -j Exotic_Greetings-branch

cvs update: Updating .

RCS file: /usr/local/newrepos/myproj/README.txt,v

retrieving revision 1.14

retrieving revision 1.14.2.1

Merging differences between 1.14 and 1.14.2.1 into README.txt
rcsmerge: warning: conflicts during merge

cvs update: Updating a-subdir

RCS file: /usr/local/newrepos/myproj/a-subdir/whatever.c,v
retrieving revision 1.3

retrieving revision 1.3.2.1

Merging differences between 1.3 and 1.3.2.1 into whatever.c
rcsmerge: warning: conflicts during merge

cvs update: Updating a-subdir/subsubdir

cvs update: Updating b-subdir

RCS file: /usr/local/newrepos/myproj/b-subdir/random.c,v
retrieving revision 1.1.1.1

retrieving revision 1.1.1.1.2.1

Merging differences between 1.1.1.1 and 1.1.1.1.2.1 into random.c

floss$ cvs

cvs update:

update
Updating .

C README.txt

cvs update:

Updating a-subdir

C a-subdir/whatever.c

cvs update:
cvs update:

Updating a-subdir/subsubdir
Updating b-subdir

M b-subdir/random.c

floss$

Two of the files conflict. No big deal; with her usual savoir-faire, jrandom resolves the

conflicts, commits,

and tags the trunk as successfully merged:

floss$ emacs README.txt a-subdir/whatever.c

floss$ cvs

cvs commit:
cvs commit:
cvs commit:
Ccvs commit:

ci -m "merged from Exotic_Greetings-branch (conflicts resolved)"
Examining .

Examining a-subdir

Examining a-subdir/subsubdir

Examining b-subdir

Checking in README.txt;
/usr/local/newrepos/myproj/README.txt,v <-- README.txt
new revision: 1.16; previous revision: 1.15

done

Checking in a-subdir/whatever.c;
/usr/local/newrepos/myproj/a-subdir/whatever.c,v <-- whatever.c
new revision: 1.5; previous revision: 1.4

124 Open Source Development With CVS

done

Checking in b-subdir/random.c;
/usr/local/newrepos/myproj/b-subdir/random.c,v <-- random.c
new revision: 1.2; previous revision: 1.1

done

floss$ cvs tag merged-Exotic_Greetings
cvs tag: Tagging .

T README.txt

T foo.gif

T hello.c

cvs tag: Tagging a-subdir

T a-subdir/whatever.c

cvs tag: Tagging a-subdir/subsubdir
T a-subdir/subsubdir/fish.c

cvs tag: Tagging b-subdir

T b-subdir/random.c

floss$

Meanwhile, gsmith needn’t wait for the merge to finish before continuing development,
as long as he makes a tag for the batch of changes from which jrandom merged (later,
jrandom will need to know this tag name; in general, branches depend on frequent and
thorough developer communications):

paste$ cvs tag Exotic_Greetings-1
cvs tag: Tagging .

T README.txt

T foo.gif

T hello.c

cvs tag: Tagging a-subdir

T a-subdir/whatever.c

cvs tag: Tagging a-subdir/subsubdir
T a-subdir/subsubdir/fish.c

cvs tag: Tagging b-subdir

T b-subdir/random.c

paste$ emacs a-subdir/whatever.c

paste$ cvs ci -m "print a randomly capitalized greeting"
cvs commit: Examining .

cvs commit: Examining a-subdir

cvs commit: Examining a-subdir/subsubdir

cvs commit: Examining b-subdir

Checking in a-subdir/whatever.c;

/usr/local/newrepos/myproj/a-subdir/whatever.c,v <-- whatever.c
new revision: 1.3.2.2; previous revision: 1.3.2.1

done

paste$

And of course, gsmith should tag those changes once he’s done:

paste$ cvs -q tag Exotic_Greetings-2
T README.txt
T foo.gif

Advanced CVS 125

T hello.c

T a-subdir/whatever.c

T a-subdir/subsubdir/fish.c
T b-subdir/random.c

paste$

While all this is going on, jrandom makes a change in a different file, one that gsmith
hasn’t touched in his new batch of edits:

floss$ emacs README.txt

floss$ cvs ci -m "Mention new Exotic Greeting features" README.txt
Checking in README.txt;

/usr/local/newrepos/myproj/README.txt,v <-- README.txt

new revision: 1.17; previous revision: 1.16

done

floss$

At this point, gsmith has committed a new change on the branch, and jrandom has
committed a nonconflicting change in a different file on the trunk. Watch what happens
when jrandom tries to merge from the branch again:

floss$ cvs -q update -j Exotic_Greetings-branch

RCS file: /usr/local/newrepos/myproj/README.txt,v

retrieving revision 1.14

retrieving revision 1.14.2.1

Merging differences between 1.14 and 1.14.2.1 into README.txt
rcsmerge: warning: conflicts during merge

RCS file: /usr/local/newrepos/myproj/a-subdir/whatever.c,v
retrieving revision 1.3

retrieving revision 1.3.2.2

Merging differences between 1.3 and 1.3.2.2 into whatever.c
rcsmerge: warning: conflicts during merge

RCS file: /usr/local/newrepos/myproj/b-subdir/random.c,v
retrieving revision 1.1

retrieving revision 1.1.1.1.2.1

Merging differences between 1.1 and 1.1.1.1.2.1 into random.c
floss$ cvs —-q update

C README.txt

C a-subdir/whatever.c

floss$

There are conflicts! Is that what you expected?

The problem lies in the semantics of merging. Back in [An Overview of CVS], page 5, I
explained that when you run

floss$ cvs update -j BRANCH

in a working copy, CVS merges into the working copy the differences between BRANCH's
root and its tip. The trouble with that behavior, in this situation, is that most of those
changes had already been incorporated into the trunk the first time that jrandom did a
merge. When CVS tried to merge them in again (over themselves, as it were), it naturally
registered a conflict.

126 Open Source Development With CVS

What jrandom really wanted to do was merge into her working copy the changes between
the branch’s most recent merge and its current tip. You can do this by using two -j flags to
update, as you may recall from [An Overview of CVS], page 5, as long as you know what
revision to specify with each flag. Fortunately, gsmith made a tag at exactly the last merge
point (hurrah for planning ahead!), so this will be no problem. First, let’s have jrandom
restore her working copy to a clean state, from which she can redo the merge:

floss$ rm README.txt a-subdir/whatever.c

floss$ cvs -q update

cvs update: warning: README.txt was lost

U README. txt

cvs update: warning: a-subdir/whatever.c was lost
U a-subdir/whatever.c

floss$

Now she’s ready to do the merge, this time using gsmith’s conveniently placed tag:

floss$ cvs -q update -j Exotic_Greetings-1 -j Exotic_Greetings-branch
RCS file: /usr/local/mewrepos/myproj/a-subdir/whatever.c,v

retrieving revision 1.3.2.1

retrieving revision 1.3.2.2

Merging differences between 1.3.2.1 and 1.3.2.2 into whatever.c
floss$ cvs —-q update

M a-subdir/whatever.c

floss$

Much better. The change from gsmith has been incorporated into whatever.c; jrandom
can now commit and tag:

floss$ cvs -q ci —m "merged again from Exotic_Greetings (1)"
Checking in a-subdir/whatever.c;

/usr/local/newrepos/myproj/a-subdir/whatever.c,v <-- whatever.c
new revision: 1.6; previous revision: 1.5
done

floss$ cvs -q tag merged-Exotic_Greetings-1
T README.txt

foo.gif

hello.c

a-subdir/whatever.c
a-subdir/subsubdir/fish.c

T b-subdir/random.c

floss$

L B B |

Even if gsmith had forgotten to tag at the merge point, all hope would not be lost. If
jrandom knew approximately when gsmith’s first batch of changes had been committed,
she could try filtering by date:

floss$ cvs update -j Exotic_Greetings-branch:3pm -j Exotic_Greetings_branch

Although useful as a last resort, filtering by date is less than ideal because it selects the
changes based on people’s recollections rather than dependable developer designations. If
gsmith’s first mergeable set of changes had happened over several commits instead of in
one commit, jrandom may mistakenly choose a date or time that would catch some of the
changes, but not all of them.

Advanced CVS 127

There’s no reason why each taggable point in gsmith’s changes needs to be sent to
the repository in a single commit — it just happens to have worked out that way in these
examples. In real life, gsmith may make several commits between tags. He can work on
the branch in isolation, as he pleases. The point of the tags is to record successive points
on the branch where he considers the changes to be mergeable into the trunk. As long
as jrandom always merges using two -j flags and is careful to use gsmith’s merge tags in
the right order and only once each, the trunk should never experience the double-merge
problem. Conflicts may occur, but they will be the unavoidable kind that requires human
resolution — situations in which both branch and trunk made changes to the same area of
code.

The Dovetail Approach — Merging In And Out Of The Trunk

Merging repeatedly from branch to trunk is good for the people on the trunk, because
they see all of their own changes and all the changes from the branch. However, the
developer on the branch never gets to incorporate any of the work being done on the trunk.

To allow that, the branch developer needs to add an extra step every now and then
(meaning whenever he feels like merging in recent trunk changes and dealing with the
inevitable conflicts):

paste$ cvs update -j HEAD

The special reserved tag HEAD means the tip of the trunk. The preceding command
merges in all of the trunk changes between the root of the current branch (Exotic_
Greetings-branch) and the current highest revisions of each file on the trunk. Of course,
gsmith should tag again after doing this, so that the trunk developers can avoid accidentally
merging in their own changes when they’re trying to get gsmith’s.

The branch developer can likewise use the trunk’s merge tags as boundaries, allowing
the branch to merge exactly those trunk changes between the last merge and the trunk’s
current state (the same way the trunk does merges). For example, supposing jrandom had
made some changes to hello.c after merging from the branch:

floss$ emacs hello.c

floss$ cvs ci -m "clarify algorithm" hello.c
Checking in hello.c;
/usr/local/newrepos/myproj/hello.c,v <-- hello.c
new revision: 1.22; previous revision: 1.21

done

floss$

Then, gsmith can merge those changes into his branch, commit, and, of course, tag:

paste$ cvs -q update -j merged-Exotic_Greetings-1 -j HEAD

RCS file: /usr/local/mewrepos/myproj/hello.c,v

retrieving revision 1.21

retrieving revision 1.22

Merging differences between 1.21 and 1.22 into hello.c

paste$ cvs -q update

M hello.c

paste$ cvs -q ci -m "merged trunk, from merged-Exotic_Greetings-1 to HEAD"

128 Open Source Development With CVS

Checking in hello.c;
/usr/local/newrepos/myproj/hello.c,v <-- hello.c
new revision: 1.21.2.1; previous revision: 1.21
done

paste$ cvs -q tag merged-merged-Exotic_Greetings-1
T README. txt

foo.gif

hello.c

a-subdir/whatever.c

a-subdir/subsubdir/fish.c

b-subdir/random.c

paste$

H A4

Notice that jrandom did not bother to tag after committing the changes to hello.c,
but gsmith did. The principle at work here is that although you don’t need to tag after
every little change, you should always tag after a merge or after committing your line of
development up to a mergeable state. That way, other people — perhaps on other branches
— have a reference point against which to base their own merges.

The Flying Fish Approach — A Simpler Way To Do It

There is a simpler, albeit slightly limiting, variant of the preceding. In it, the branch
developers freeze while the trunk merges, and then the trunk developers create an entirely
new branch, which replaces the old one. The branch developers move onto that branch and
continue working. The cycle continues until there is no more need for branch development.
It goes something like this (in shorthand — we’ll assume jrandom@floss has the trunk and
gsmith@paste has the branch, as usual):

floss$ cvs tag -b BRANCH-1
paste$ cvs checkout -r BRANCH-1 myproj

Trunk and branch both start working; eventually, the developers confer and decide it’s

time to merge the branch into the trunk:
paste$ cvs ci -m "committing all uncommitted changes"
floss$ cvs update -j BRANCH-1

All the changes from the branch merge in; the branch developers stop working while the
trunk developers resolve any conflicts, commit, tag, and create a new branch:

floss$ cvs ci -m "merged from BRANCH-1"
floss$ cvs tag merged-from-BRANCH-1
floss$ cvs tag -b BRANCH-2

Now the branch developers switch their working copies over to the new branch; they
know they won’t lose any uncommitted changes by doing so, because they were up-to-
date when the merge happened, and the new branch is coming out of a trunk that has
incorporated the changes from the old branch:

paste$ cvs update -r BRANCH-2

And the cycle continues in that way, indefinitely; just substitute BRANCH-2 for
BRANCH-1 and BRANCH-3 for BRANCH-2.

I call this the Flying Fish technique, because the branch is constantly emerging from
the trunk, traveling a short distance, then rejoining it. The advantages of this approach

Advanced CVS 129

are that it’s simple (the trunk always merges in all the changes from a given branch) and
the branch developers never need to resolve conflicts (they’re simply handed a new, clean
branch on which to work each time). The disadvantage, of course, is that the branch people
must sit idle while the trunk is undergoing merge (which can take an arbitrary amount of
time, depending on how many conflicts need to be resolved). Another minor disadvantage
is that it results in many little, unused branches laying around instead of many unused
non-branch tags. However, if having millions of tiny, obsolete branches doesn’t bother you,
and you anticipate fairly trouble-free merges, Flying Fish may be the easiest way to go in
terms of mental bookkeeping.

Whichever way you do it, you should try to keep the separations as short as possible. If
the branch and the trunk go too long without merging, they could easily begin to suffer not
just from textual drift, but semantic drift as well. Changes that conflict textually are the
easiest ones to resolve. Changes that conflict conceptually, but not textually, often prove
hardest to find and fix. The isolation of a branch, so freeing to the developers, is dangerous
precisely because it shields each side from the effects of others’ changes...for a time. When
you use branches, communication becomes more vital than ever: Everyone needs to make
extra sure to review each others’ plans and code to ensure that they’re all staying on the
same track.

Branches And Keyword Expansion — Natural Enemies

If your files contain RCS keywords that expand differently on branch and trunk, you’re
almost guaranteed to get spurious conflicts on every merge. Even if nothing else changed, the
keywords are overlapping, and their expansions won’t match. For example, if README.txt
contains this on the trunk

$Revision: 1.14 §
and this on the branch
$Revision: 1.14.2.1 §
then when the merge is performed, you'll get the following conflict:
floss$ cvs update -j Exotic_Greetings-branch
RCS file: /usr/local/newrepos/myproj/README.txt,v
retrieving revision 1.14
retrieving revision 1.14.2.1
Merging differences between 1.14 and 1.14.2.1 into README.txt

rcsmerge: warning: conflicts during merge
floss$ cat README.txt

<<<<<<< README.txt
key $Revision: 1.14 §

key $Revision: 1.14.2.1 §
S5>>>>> 1.14.2.1
floss$
To avoid this, you can temporarily disable expansion by passing the -kk option (I don’t
know what it stands for; "kill keywords" maybe?) when you do the merge:

130 Open Source Development With CVS

floss$ cvs update -kk -j Exotic_Greetings-branch

RCS file: /usr/local/newrepos/myproj/README.txt,v

retrieving revision 1.14

retrieving revision 1.14.2.1

Merging differences between 1.14 and 1.14.2.1 into README.txt
floss$ cat README.txt

$Revision$
floss$
There is one thing to be careful of, however: If you use -kk, it overrides whatever other
keyword expansion mode you may have set for that file. Specifically, this is a problem for
binary files, which are normally -kb (which suppresses all keyword expansion and line-end

conversion). So if you have to merge binary files in from a branch, don’t use -kk. Just deal
with the conflicts by hand instead.

Tracking Third-Party Sources (Vendor Branches)

Sometimes a site will make local changes to a piece of software received from an outside
source. If the outside source does not incorporate the local changes (and there might be
many legitimate reasons why it can’t), the site has to maintain its changes in each received
upgrade of the software.

CVS can help with this task, via a feature known as vendor branches. In fact, vendor
branches are the explanation behind the puzzling (until now) final two arguments to cvs
import: the vendor tag and release tag that I glossed over in [An Overview of CVS], page 5.

Here’s how it works. The initial import is just like any other initial import of a CVS
project (except that you’ll want to choose the vendor tag and release tag with a little care):

floss$ pwd
/home/jrandom/theirproj-1.0

floss$ cvs import -m "Import of TheirProj 1.0" theirproj Them THEIRPROJ_1_0

N theirproj/INSTALL
theirproj/README
theirproj/src/main.c
theirproj/src/parse.c
theirproj/src/digest.c
theirproj/doc/random.c
theirproj/doc/manual.txt

=Z2==2=2=2=

No conflicts created by this import

floss$

Then you check out a working copy somewhere, make your local modifications, and
commit:
floss$ cvs -q co theirproj
U theirproj/INSTALL
U theirproj/README
U theirproj/doc/manual.txt

Advanced CVS 131

U theirproj/doc/random.c

U theirproj/src/digest.c

U theirproj/src/main.c

U theirproj/src/parse.c

floss$ cd theirproj

floss$ emacs src/main.c src/digest.c

floss$ cvs -q update

M src/digest.c

M src/main.c

floss$ cvs -q ci —-m "changed digestion algorithm; added comment to main"
Checking in src/digest.c;

/usr/local/newrepos/theirproj/src/digest.c,v <-- digest.c
new revision: 1.2; previous revision: 1.1

done

Checking in src/main.c;
/usr/local/newrepos/theirproj/src/main.c,v <-- main.c

new revision: 1.2; previous revision: 1.1

done

floss$

A year later, the next version of the software arrives from Them, Inc., and you must
incorporate your local changes into it. Their changes and yours overlap slightly. They’ve
added one new file, modified a couple of files that you didn’t touch, but also modified two
files that you modified.

First you must do another import, this time from the new sources. Almost everything
is the same as it was in the initial import — you’re importing to the same project in the
repository, and on the same vendor branch. The only thing different is the release tag:

floss$ pwd

/home/jrandom/theirproj-2.0

floss$ cvs —-q import -m "Import of TheirProj 2.0" theirproj Them THEIRPROJ_2_0
U theirproj/INSTALL

N theirproj/TODO

U theirproj/README

cvs import: Importing /usr/local/newrepos/theirproj/src
C theirproj/src/main.c

U theirproj/src/parse.c

C theirproj/src/digest.c

cvs import: Importing /usr/local/newrepos/theirproj/doc
U theirproj/doc/random.c

U theirproj/doc/manual.txt

2 conflicts created by this import.
Use the following command to help the merge:

cvs checkout —-jThem:yesterday -jThem theirproj

floss$

132 Open Source Development With CVS

My goodness — we’ve never seen CVS try to be so helpful. It’s actually telling us what
command to run to merge the changes. And it’s almost right, too! Actually, the command
as given works (assuming that you adjust yesterday to be any time interval that definitely
includes the first import but not the second), but I mildly prefer to do it by release tag
instead:

floss$ cvs checkout —-j THEIRPROJ_1_0 -j THEIRPROJ_2_0 theirproj
cvs checkout: Updating theirproj

U theirproj/INSTALL

U theirproj/README

U theirproj/T0ODO

cvs checkout: Updating theirproj/doc

U theirproj/doc/manual.txt

U theirproj/doc/random.c

cvs checkout: Updating theirproj/src

U theirproj/src/digest.c

RCS file: /usr/local/newrepos/theirproj/src/digest.c,v
retrieving revision 1.1.1.1

retrieving revision 1.1.1.2

Merging differences between 1.1.1.1 and 1.1.1.2 into digest.c
rcsmerge: warning: conflicts during merge

U theirproj/src/main.c

RCS file: /usr/local/newrepos/theirproj/src/main.c,v
retrieving revision 1.1.1.1

retrieving revision 1.1.1.2

Merging differences between 1.1.1.1 and 1.1.1.2 into main.c
U theirproj/src/parse.c

floss$

Notice how the import told us that there were two conflicts, but the merge only seems to
claim one conflict. It seems that CVS’s idea of a conflict is a little different when importing
than at other times. Basically, import reports a conflict if both you and the vendor modified
a file between the last import and this one. However, when it comes time to merge, update
sticks with the usual definition of "conflict" — overlapping changes. Changes that don’t
overlap are merged in the usual way, and the file is simply marked as modified.

A quick diff verifies that only one of the files actually has conflict markers:

floss$ cvs -q update
C src/digest.c

M src/main.c

floss$ cvs diff -c
Index: src/digest.c

RCS file: /usr/local/newrepos/theirproj/src/digest.c,v
retrieving revision 1.2
diff -c -rl1.2 digest.c

*** src/digest.c 1999/07/26 08:02:18 1.2
-- src/digest.c 1999/07/26 08:16:15
3k 3k 3k 3k 3k 5k >k 3k >k k >k dk %k %k 5k

kkk 3,7 sokkok
-- 3,11 —-——-

Advanced CVS 133

void
digest ()
{
+ <<<K<<KK< digest.c
printf ("gurgle, slorp\n");

+ printf ("mild gurgle\n");
+ >>>>>>> 1.1.1.2
}

Index: src/main.c

RCS file: /usr/local/newrepos/theirproj/src/main.c,v
retrieving revision 1.2
diff -c¢ -r1.2 main.c

**x*x grc/main.c 1999/07/26 08:02:18 1.2
-- src/main.c 1999/07/26 08:16:15

sk s o sk ok s ok sk ok s ok sk ok ok ok

K%k 7,9 kkkk

- 7,11 ———-

{

printf ("Goodbye, world!\n");

}
+
+ /* I, the vendor, added this comment for no good reason. */
floss$

From here, it’s just a matter of resolving the conflicts as with any other merge:

floss$ emacs src/digest.c src/main.c

floss$ cvs —-q update

M src/digest.c

M src/main.c

floss$ cvs diff src/digest.c
cvs diff src/digest.c

Index: src/digest.c

RCS file: /usr/local/mnewrepos/theirproj/src/digest.c,v
retrieving revision 1.2

diff -r1.2 digest.c

6¢c6

< printf ("gurgle, slorp\n");

> printf ("mild gurgle, slorp\n");

floss$

Then commit the changes

floss$ cvs -q ci -m "Resolved conflicts with import of 2.0"
Checking in src/digest.c;
/usr/local/newrepos/theirproj/src/digest.c,v <-— digest.c
new revision: 1.3; previous revision: 1.2

134 Open Source Development With CVS

done

Checking in src/main.c;
/usr/local/newrepos/theirproj/src/main.c,v <-- main.c
new revision: 1.3; previous revision: 1.2

done

floss$

and wait for the next release from the vendor. (Of course, you’ll also want to test that
your local modifications still work!)

Exporting For Public Distribution

CVS is a good distribution mechanism for developers, but most users will obtain the
software through a downloadable package instead. This package is generally not a CVS
working copy — it’s just a source tree that can be easily configured and compiled on the
user’s system.

However, CVS does offer a mechanism to help you create that package, namely the
cvs export command. To export a project is just like checking out a working copy of
the project, except that it checks out the project tree without any CVS administrative
subdirectories. That is to say, you don’t get a working copy, you just get a source tree
that knows nothing about where it came from or what the CVS versions of its files are.
Thus, the exported copy is just like what the public sees after it downloads and unpacks
a distribution. Assuming the project is arranged to be directly compilable from a working
copy (and it certainly should be!), then it will still be compilable from the exported copy.

The export command works like checkout, except that it requires a tag name or date.
For example, here we tag the project with a release name, and then export based on that:

floss$ pwd

/home/ jrandom/myproj

floss$ cvs -q tag R_1_0

T README.txt

T hello.c

T a-subdir/whatever.c

T a-subdir/subsubdir/fish.c

T b-subdir/random.c

floss$ cd ..

floss$ cvs -d /usr/local/newrepos -q export -r R_1_0 -d myproj-1.0 myproj
U myproj-1.0/README. txt

U myproj-1.0/hello.c

U myproj-1.0/a-subdir/whatever.c

U myproj-1.0/a-subdir/subsubdir/fish.c
U myproj-1.0/b-subdir/random.c

floss$ cd myproj-1.0

floss$ 1s

README.txt a-subdir b-subdir hello.c

Notice how, since the export command is not invoked from within a working copy, it’s
necessary to use the global -d option to tell CVS which repository to use. Also, in this
particular example, we exported into an explicitly named directory (myproj-1.0) instead

Advanced CVS 135

of defaulting to the project’s name (myproj), since there was a working copy of that name
already present. This situation is not uncommon.

After the exported copy is created, as in the above example, the following might be
sufficient to complete the release, if the project is a simple one:

floss$ tar cf myproj-1.0.tar myproj-1.0

floss$ gzip --best myproj-1.0.tar

floss$ 1s

myproj/ myproj-1.0/ myproj-1.0.tar.gz

floss$ rm -rf myproj-1.0

floss$ mv myproj-1.0.tar.gz /home/ftp/pub/myproj/

Of course, running all of these commands by hand is rare. More often, cvs export is
called from within some script that handles all aspects of release and packaging process.
Given that there are often several "test" releases leading up to each public release, it is
desirable that the procedures for creating a releasable package be highly automated.

The Humble Guru

If you read and understood (and better yet, experimented with) everything in this chap-
ter, you may rest assured that there are no big surprises left for you in CVS — at least until
someone adds a major new feature to CVS. Everything you need to know to use CVS on a
major project has been presented.

Before that goes to your head, let me reiterate the suggestion, first made in Chapter 4,
that you subscribe to the info-cvs@gnu. org mailing list. Despite having the impoverished
signal-to-noise ratio common to most Internet mailing lists, the bits of signal that do come
through are almost always worth the wait. I was subscribed during the entire time I
wrote this chapter (indeed, for all previous chapters as well), and you would be amazed
to know how many important details I learned about CVS’s behavior from reading other
people’s posts. If you're going to be using CVS seriously, and especially if you're the CVS
administrator for a group of developers, you can benefit a lot from the shared knowledge of
all the other serious users out there.

136 Open Source Development With CVS

Tips And Troubleshooting 137

Tips And Troubleshooting

I’ve said in earlier chapters that CVS is not "black box" software. Black boxes don’t let
you peek inside; they don’t give you internal access so that you can fix (or break) things.
The premise is that the black box usually doesn’t need to be fixed. Most of the time, the
software should work perfectly, so users don’t need internal access. But when black boxes
do fail, they tend to fail completely. Any problem at all is a showstopper, because there
aren’t many options for repair.

CVS is more like a perfectly transparent box — except without the box. Its moving parts
are exposed directly to the environment, not hermetically sealed off, and bits of that environ-
ment (unexpected file permissions, interrupted commands, competing processes, whatever)
can sometimes get inside the mechanism and gum up the gears. But even though CVS does
not always work perfectly, it rarely fails completely, either. It has the advantage of graceful
degradation; the degree to which it doesn’t work is usually proportional to the number and
severity of problems in its environment. If you know enough about what CVS is trying to
do — and how it’s trying to do it — you’ll know what to do when things go wrong.

Although T can’t list all of the problems that you might encounter, I’ve included some of
the more common ones here. This chapter is divided into two sections: The first describes
those parts of the environment to which CVS is most sensitive (mainly repository permis-
sions and the working copy administrative area), and the second describes some of the
most frequently encountered problems and their solutions. By seeing how to handle these
common situations, you will get a feeling for how to approach any unexpected problem in
CVS.

The Usual Suspects

As a CVS administrator (read "field doctor"), you will find that 90 percent of your users’
problems are caused by inconsistent working copies, and the other 90 percent by incorrect
repository permissions. Therefore, before looking at any specific situations, I’ll give a quick
overview of the working copy administrative area and review a few important things about
repository permissions.

The Working Copy Administrative Area

You’ve already seen the basics of working copy structure in [An Overview of CVS],
page 5; in this section, we’ll go into a bit more detail. Most of the details concern the
files in the CVS/ administrative subdirectories. You already know about Entries, Root,
and Repository, but the CVS/ subdirectory can also contain other files, depending on the
circumstances. I'll describe those other files here, partly so they don’t surprise you when
you encounter them, and partly so you can fix them if they ever cause trouble.

‘CVS/Entries.Log’

Sometimes, a file named ‘CVS/Entries.Log’ will mysteriously appear. The sole purpose
of this file is to temporarily cache minor changes to CVS/Entries, until some operation
significant enough to be worth rewriting the entire Entries file comes along. CVS has no

138 Open Source Development With CVS

ability to edit the Entries file in place; it must read the entire file in and write it back
out to make any change. To avoid this effort, CVS sometimes records small changes in
Entries.Log, until the next time it needs to rewrite Entries.

The format of Entries.Log is like Entries, except for an extra letter at the beginning of
each line. A means that the line is to be added to the main Entries file, and R means it is
to be removed.

For the most part, you can ignore Entries.Log; it’s rare that a human has to understand
the information it contains. However, if you're reading over an Entries file to debug some
problem in a working copy, you should also examine Entries.Log.

‘CVS/Entries.Backup’

The CVS/Entries.Backup file is where CVS actually writes out a new Entries file, be-
fore renaming it to ‘Entries’ (similar to the way it writes to temporary RCS files in the
repository and then moves them to their proper name when they’re complete). Because it
becomes Entries when it’s complete, you’ll rarely see an Entries.Backup file; if you do see
one, it probably means CVS got interrupted in the middle of some operation.

‘CVS/Entries.Static’

If the CVS/Entries.Static file exists, it means that the entire directory has not been
fetched from the repository. (When CVS knows a working directory is in an incomplete
state, it will not bring additional files into that directory.)

The Entries.Static file is present during checkouts and updates and removed immedi-
ately when the operation is complete. If you see Entries.Static, it means that CVS was
interrupted, and its presence prevents CVS from creating any new files in the working copy.
(Often, running cvs update -d solves the problem and removes Entries.Static.)

The absence of Entries.Static does not necessarily imply that the working copy contains
all of the project’s files. Whenever a new directory is created in the project’s repository,
and someone updates their working copy without passing the -d flag to update, the new
directory will not be created in the working copy. Locally, CVS is unaware that there is a
new directory in the repository, so it goes ahead and removes the Entries.Static file when
the update is complete, even though the new directory is not present in the working copy.

‘CVS/Tag’

If the CVS/Tag file is present, it names a tag associated, in some sense, with the directory.
I'say "in some sense" because, as you know, CVS does not actually keep any revision history
for directories and, strictly speaking, cannot attach tags to them. Tags are attached to
regular files only or, more accurately, to particular revisions in regular files.

However, if every file in a directory is on a particular tag, CVS likes to think of the
entire directory as being on the tag, too. For example, if you were to check out a working
copy on a particular branch:

floss$ cvs co -r Bugfix_Branch_1

Tips And Troubleshooting 139

and then add a file inside it, you’d want the new file’s initial revision to be on that
branch, too. For similar reasons, CVS also needs to know if the directory has a nonbranch
sticky tag or date set on it.

Tag files contain one line. The first character on the line is a single-letter code telling
what kind of tag it is, and the rest of the line is the tag’s name. Currently, CVS uses only
these three single-letter codes:

T — A branch tag
N — A nonbranch (regular) tag
D — A sticky date, which occurs if a command such as
floss$ cvs checkout -D 1999-05-15 myproj
or
floss$ cvs update -D 1999-05-15 myproj
is run.

(If you see some other single-letter code, it just means that CVS has added a new tag
type since this chapter was written.)

You should not remove the Tag file manually; instead, use cvs update -A.

Rarities

There are a few other files you may occasionally find in a CVS/ subdirectory:
CVS/Checkin.prog, CVS/Update.prog
CVS/Notify, CVS/Notify.tmp
CVS/Base/, CVS/Baserev, CVS/Baserev.tmp
CVS/Template

These files are usually not the cause of problems, so I'm just listing them (see [CVS
Reference], page 151 for their full descriptions).

Portability And Future Extension

As features are added to CVS, new files (not listed here) may appear in working copy
administrative areas. As new files are added, they’ll probably be documented in the Ced-
erqvist manual, in the node Working Directory Storage. You can also start looking in
src/cvs.h in the source distribution, if you prefer to learn from code.

Finally, note that all CVS/* files — present and future — use whatever line-ending con-
vention is appropriate for the working copy’s local system (for example, LF for Unix or
CRLF for Windows). This means that if you transport a working copy from one kind of
machine to the other, CVS won’t be able to handle it (but then, you’d have other problems,
because the revision-controlled files themselves would have the wrong line-end conventions
for their new location).

140 Open Source Development With CVS

Repository Permissions

CVS does not require any particular repository permission scheme — it can handle a
wide variety of permission arrangements. However, to avoid getting confusing behaviors,
you should make sure your repository setup meets at least the following criteria:

If a user wants any kind of access at all — even read-only access — to a given subdirectory
of the repository, she usually needs file system-level write permission to that subdirec-
tory. This is necessary because CVS creates temporary lock files in the repository to
ensure data consistency. Even read-only operations (such as checkout or update) create
locks, to signal that they need the data to stay in one state until they’re done.

As noted in [Repository Administration], page 63, you can get around this writeability
requirement by setting the LockDir parameter in CVSROOT /config, like this:

LockDir=/usr/local/cvslocks

Of course, then you would need to make sure the directory /usr/local/cvslocks is write-
able by all CVS users. Either way, most CVS operations, including read-only ones, are
going to require a writeable directory somewhere. By default, that directory is the
project’s repository; if you’re very security conscious, you can change it to be some-
where else.

Make sure the CVSROOT /history file is world-writeable (if it exists at all). If the
history file exists, most CVS operations attempt to append a record to it; if the attempt
fails, the operation exits with an error.

Unfortunately (and inexplicably), the history file is not born world-writeable when
you create a new repository with cvs init. At least with the current version of CVS,
you should explicitly change its permissions after you create a new repository (or just
remove it, if you want to disable history logging entirely).

(This problem may go away — I just now submitted a patch to the CVS maintainers
that makes the history file world-writeable when you initialize a new repository. So
perhaps if you get a more recent version of CVS than the one available now (September
1999), it won’t be a problem for you.)

For security purposes, you almost certainly want to make sure that most CVS users
do not have Unix-level write access to the CVSROOT directory in the repository. If
someone has checkin access to CVSROOT, they can edit commitinfo, loginfo, or any
of the other trigger files to invoke a program of their choice — they could even commit
a new program if the one they want isn’t on the system already. Therefore, you should
assume that anyone who has commit access to CVSROOT is able to run arbitrary
commands on the system.

General Troubleshooting Tips

The bulk of this chapter is organized into a series of questions and answers, similar to
an Internet FAQ (Frequently Asked Questions) document. These are all based on actual
CVS experiences. But before we look at individual cases, let’s take a moment to consider
CVS troubleshooting from a more general point of view.

The first step in solving a CVS problem is usually to determine whether it’s a working
copy or repository problem. The best technique for doing that, not surprisingly, is to see

Tips And Troubleshooting 141

if the problem occurs in working copies other than the one where it was first noticed. If it
does, it’s likely a repository issue; otherwise, it’s probably just a local issue.

Working copy problems tend to be encountered more frequently, not because working
copies are somehow less reliable than repositories, but because each repository usually
has many working copies. Although most working copy knots can be untied with enough
patience, you may occasionally find it more time-efficient simply to delete the working copy
and check it out again.

Of course, if checking out again takes too long, or there is considerable uncommitted
state in the working copy that you don’t want to lose, or if you just want to know what’s
wrong, it’s worth digging around to find the cause of the problem. When you start digging
around, one of the first places to look is in the CVS/ subdirectories. Check the file contents
and the file permissions. Very occasionally, the permissions can mysteriously become read-
only or even unreadable. (I suspect this is caused by users accidentally mistyping Unix
commands rather than any mistake on CVS’s part.)

Repository problems are almost always caused by incorrect file and directory permissions.
If you suspect a problem may be due to bad repository permissions, first find out the
effective repository user ID of the person who’s having the trouble. For all local and most
remote users, this is either their regular username or the username they specified when
they checked out their working copy. If they’re using the pserver method with user-aliasing
(see the section [Anonymous Access|, page 75 in [Repository Administration], page 63), the
effective user ID is the one on the right in the CVSROOT /passwd file. Failure to discover
this early on can cause you to waste a lot of time debugging the wrong thing.

And now, without further ado...

Some Real Life Problems (With Solutions)

All of these situations are ones I've encountered in my real-life adventures as a CVS
troubleshooter (plus a few items that are not really problems, just questions that I’ve heard
asked so often that they may as well be answered here). The list is meant to be fairly
comprehensive, and it may repeat material you’ve seen in earlier chapters.

The situations are listed according to how frequently they seem to arise, with the most
common ones first.

CVS says it is waiting for a lock; what does that mean?

If you see a message like this
cvs update: [22:58:26] waiting for gsmith’s lock in /usr/local/newrepos/myproj
it means you’re trying to access a subdirectory of the repository that is locked by some
other CVS process at the moment. A process is being run in that directory so it may not
be in a consistent state for other CVS processes to use.
However, if the wait message persists for a long time, it probably means that a CVS
process failed to clean up after itself, for whatever reason. It can happen when CVS dies
suddenly and unexpectedly, say, due to a power failure on the repository machine.

The solution is to remove the lock files by hand from the repository subdirectory in
question. Go into that part of the repository and look for files named ‘#cvs.lock’ or that

142 Open Source Development With CVS

begin with ‘#cvs.wfl’ or ‘#cvs.rfl’. Compare the file’s timestamps with the start times
of any currently running CVS processes. If the files could not possibly have been created
by any of those processes, it’s safe to delete them. The waiting CVS processes eventually
notice when the lock files are gone — this should take about 30 seconds — and allow the
requested operation to proceed.

See the node Locks in the Cederqvist manual for more details.

CVS claims a file is failing Up-To-Date check; what do I do?

Don’t panic — it just means that the file has changed in the repository since the last time
you checked it out or updated it.

Run cvs update on the file to merge in the changes from the repository. If the received
changes conflict with your local changes, edit the file to resolve the conflict. Then try your
commit again — it will succeed, barring the possibility that someone committed yet another
revision while you were busy merging the last changes.

The pserver access method is not working

The most common, less obvious cause of this problem is that you forgot to list the
repository using an --allow-root option in your inetd configuration file.
Recall this example /etc/inetd.conf line from [Repository Administration], page 63:
cvspserver stream tcp nowait root /usr/local/bin/cvs cvs \
--allow-root=/usr/local/newrepos pserver
(In the actual file, this is all one long line, with no backslash.)

The --allow-root=/usr/local/newrepos portion is a security measure, to make sure
that people can’t use CVS to get pserver access to repositories that are not supposed to be
served remotely. Any repository intended to be accessible via pserver must be mentioned
in an -—allow-root. You can have as many different -—allow-root options as you need
for all of your system’s repositories (or anyway, as many as you want until you bump up
against your inetd’s argument limit).

See [Repository Administration], page 63 for more details on setting up the password-
authenticating server.

The pserver access method is STILL not working

Okay, if the problem is not a missing -—allow-root, here are a few other possibilities:
The user has no entry in the CVSROOT /passwd file, and the CVSROOT /config file
has SystemAuth=no so CVS will not fall back on the system password file (or Sys-
temAuth=yes, but the system password file has no entry for this user either).

The user has an entry in the CVSROOT /passwd file, but there is no user by that name
on the system, and the CVSROOQOT /passwd entry does not map the user to any valid
system username.

The password is wrong (but CVS is usually pretty good about informing the user of
this, so that’s probably not the answer).

Everything is set up correctly with the passwd files and in /etc/inetd.conf, but you
forgot an entry like this in /etc/services:

Tips And Troubleshooting 143

cvspserver 2401/tcp

so inetd is not even listening on that port to pass connections off to CVS.

My commits seem to happen in pieces instead of atomically

That’s because CVS commits happen in pieces, not atomically. :-)

More specifically, CVS operations happen directory by directory. When you do a commit
(or an update, or anything else, for that matter) spanning multiple directories, CVS locks
each corresponding repository directory in turn while it performs the operation for that
directory.

For small- to medium-sized projects, this is rarely a problem — CVS manages to do its
thing in each directory so quickly that you never notice the nonatomicity. Unfortunately, in
large projects, scenarios like the following can occur (imagine this taking place in a project
with at least two deep, many-filed subdirectories, A and B):

1. User gsmith starts a commit, involving files from both subdirectories. CVS commits
the files in B first (perhaps because gsmith specified the directories on the command
line in that order).

2. User jrandom starts a cvs update. The update, for whatever reason, starts with working
copy directory A (CVS makes no guarantees about the order in which it processes
directories or files, if left to its own devices). Note that there is no locking contention,
because gsmith is not active in A yet.

3. Then, gsmith’s commit finishes B, moves on to A, and finishes A.

4. Finally, jrandom’s update moves on to B and finishes it.

Clearly, when this is all over, jrandom’s working copy reflects gsmith’s changes to B but
not A. Even though gsmith intended the changes to be committed as a single unit, it didn’t
happen that way. Now jrandom’s working copy is in a state that gsmith never anticipated.

The solution, of course, is for jrandom to do another cvs update to fetch the uncaught
changes from gsmith’s commit. However, that assumes that jrandom has some way of
finding out in the first place that he only got part of gsmith’s changes.

There’s no easy answer to this quandary. You simply have to hope that the inconsistent
state of the working copy will somehow become apparent (maybe the software won’t build,
or jrandom and gsmith will have a conversation that’s confusing until they realize what
must have happened).

CVS’s failure to provide atomic transaction guarantees is widely considered a bug. The
only reason that locks are not made at the top level of the repository is that this would result
in intolerably frequent lock contentions for large projects with many developers. Therefore,
CVS has chosen the lesser of two evils, reducing the contention frequency but allowing
the possibility of interleaved reads and writes. Someday, someone may modify CVS (say,
speeding up repository operations) so that it doesn’t have to choose between two evils; until
then, we’re stuck with nonatomic actions.

For more information, see the node Concurrency in the Cederqvist manual.

144 Open Source Development With CVS

CVS keeps changing file permissions; why does it do that?

In general, CVS doesn’t do a very good job of preserving permissions on files. When you
import a project and then check it out, there is no guarantee that the file permissions in
the new working copy will be the same as when the project was imported. More likely, the
working copy files will be created with the same standard permissions that you normally
get on newly created files.

However, there is at least one exception. If you want to store executable shell scripts in
the project, you can keep them executable in all working copies by making the corresponding
repository file executable:

floss$ 1s -1 /usr/local/newrepos/someproj

total 6

-r--r--r-- 1 jrandom wusers 630 Aug 17 01:10 README.txt,v
-r-xr-xr-x 1 jrandom wusers 1041 Aug 17 01:10 scrub.pl,v*
-r--r--r-- 1 jrandom wusers 750 Aug 17 01:10 hello.c,v

Notice that although the file is executable, it is still read-only, as all repository files
should be (remember that CVS works by making a temporary copy of the RCS file, doing
everything in the copy, and then replacing the original with the copy when ready).

When you import or add an executable file, CVS preserves the executable bits, so if the
permissions were correct from the start, you have nothing to worry about. However, if you
accidentally add the file before making it executable, you must go into the repository and
manually set the RCS file to be executable.

The repository permissions always dominate. If the file is nonexecutable in the reposi-
tory, but executable in the working copy, the working copy file will also be nonexecutable
after you do an update. Having your files’ permissions silently change can be extremely
frustrating. If this happens, first check the repository and see if you can solve it by setting
the appropriate permissions on the corresponding RCS files.

A feature called PreservePermissions has recently been added to CVS that may allevi-
ate some of these problems. However, using this feature can cause other unexpected results
(which is why I’'m not recommending it unconditionally here). Make sure you read the

nodes config and Special Files in the Cederqvist before putting PreservePermissions=yes
in CVSROOT /config.

CVS on Windows complains it cannot find my .cvspass file; why?

For pserver connections, CVS on the client side tries to find the .cvspass file in your home
directory. Windows machines don’t have a natural "home" directory, so CVS consults the
environment variable JHOME}. However, you have to be very careful about how you set
HOME. This will work:

set HOME=C:
This will not:
set HOME=C:\
That extra backslash is enough to confuse CVS, and it will be unable to open ‘C:\\.cvspass’.
So, the quick and permanent solution is to put
set HOME=C:
into your autoexec.bat and reboot. CVS pserver should work fine after that.

Tips And Troubleshooting 145

My working copy is on several different branches; help?

You mean different subdirectories of your working copy somehow got on different
branches? You probably ran updates with the -r flag, but from places other than the top
level of the working copy.

No big deal. If you want to return to the trunk, just run this
cvs update -r HEAD

or this
cvs update -A

from the top directory. Or, if you want to put the whole working copy on one of the
branches, do this:

cvs update -r Branch_Name

There’s nothing necessarily wrong with having one or two subdirectories of your working
copy on a different branch than the rest of it, if you need to do some temporary work on
that branch just in those locations. However, it’s usually a good idea to switch them back
when you’re done — life is much less confusing when your whole working copy is on the same
line of development.

When I do export -d I sometimes miss recent commits

This is due to a clock difference between the repository and local machines. You can
solve it by resetting one or both of the clocks, or specifying a different date as the argument
to -D. It’s perfectly acceptable to specify a date in the future (such as -D tomorrow), if
that’s what it takes to compensate for the time difference.

I get an error about val-tags; what should I do?

If you see an error like this:

cvs [export aborted]: cannot write /usr/local/myproj/CVSRO0T/val-tags: \
Operation not permitted
it means the user CVS is running as does not have permission to write to the CVSROOT /val-
tags file. This file stores valid tag names, to give CVS a fast way to determine what tags
are valid. Unfortunately, CVS sometimes modifies this file even for operations that are
read-only with respect to the repository, such as checking out a project.

This is a bug in CVS and may be fixed by the time you read this. Until then, the
solution is either to make val-tags world-writeable or, failing that, to remove it or change
its ownership to the user running the CVS operation. (You’d think just changing the
permissions would be enough, but on several occasions I’ve had to change the ownership,
too.)

I am having problems with sticky tags; how do I get rid of them?

Various CVS operations cause the working copy to have a sticky tag, meaning a single
tag that corresponds to each revision for each file (in the case of a branch, the sticky tag is
applied to any new files added in the working copy). You get a sticky tagged working area
whenever you check out or update by tag or date, for example:

146 Open Source Development With CVS

floss$ cvs update -r Tag_Name
or
floss$ cvs checkout -D ’1999-08-16’

If a date or a nonbranch tag name is used, the working copy will be a frozen snapshot
of that moment in the project’s history — so naturally you will not be able to commit any
changes from it.

To remove a sticky tag, run update with the -A flag

floss$ cvs update -A
which clears all the sticky tags and updates each file to its most recent trunk revision.

Checkouts/updates exit with error saying cannot expand modules

This is just a case of a bad error message in CVS; probably someone will get around to

fixing it sooner or later, but meanwhile it may bite you. The error message looks something
like this:

floss$ cvs co -d bwf-misc user-space/bwf/writings/misc
cvs server: cannot find module ‘user-space/bwf/writings/misc’ - ignored
cvs [checkout aborted]: cannot expand modules

CVS appears to be saying that there’s something wrong with the CVSROOT /modules
file. However, what’s really going on is a permission problem in the repository. The directory
I'm trying to check out isn’t readable, or one of its parents isn’t readable. In this case, it
was a parent:

floss$ 1s -1d /usr/local/cvs/user-space/bwf

drwx------ 19 bwf users 1024 Aug 17 01:24 bwf/

Don’t let that egregiously wrong error message fool you — this is a repository permission
problem.

I cannot seem to turn off watches

You probably did
floss$ cvs watch remove
on all the files, but forgot to also do:
floss$ cvs watch off
A hint for diagnosing watch problems: Sometimes it can be immensely clarifying to
just go into the repository and examine the CVS/fileattr files directly. See [Repository
Administration], page 63 for more information about them.

My binary files are messed up

Did you remember to use -kb when you added them? If not, CVS may have performed
line-end conversion or RCS keyword substitution on them. The easiest solution is usually
to mark them as binary

floss$ cvs admin -kb foo.gif

and then commit a fixed version of the file. CVS will not corrupt the new commit or

any of the commits thereafter, because it now knows the file is binary.

Tips And Troubleshooting 147

CVS is not doing line-end conversion correctly

If you’re running the CVS client on a non-Unix platform and are not getting the line-
end conventions that you want in some working copy files, it’s usually because they were
accidentally added with -kb when they shouldn’t have been. This can be fixed in the
repository with, believe it or not, the command:

floss$ cvs admin -kkv FILE

The -kkv means to do normal keyword substitution and implies normal line-end con-
versions as well. (Internally, CVS is a bit confused about the difference between keyword
substitution and line-end conversion. This confusion is reflected in the way the -k options
can control both parameters.)

Unfortunately, that admin command only fixes the file in the repository — your working

copy still thinks the file is binary. You can hand edit the CVS/Entries line for that file,
removing the -kb, but that won’t solve the problem for any other working copies out there.

I need to remove a subdirectory in my project; how do I do it?

WEell, you can’t exactly remove the subdirectory, but you can remove all of the files in it
(first remove them, then cvs remove them, and then commit). Once the directory is empty,
people can have it automatically pruned out of their working copies by passing the -P flag
to update.

Can I copy .cvspass files or portions of them?

Yes, you can. You can copy ‘.cvspass’ files from machine to machine, and you can even
copy individual lines from one .cvspass file to another. For high-latency servers, this may
be faster than running cvs login from each working copy machine.

Remember that if you transport a .cvspass file between two machines with different line-
ending conventions, it probably won’t work (of course, you can probably do the line-end
conversion manually without too much trouble).

I just committed some files with the wrong log message

You don’t need to hand-edit anything in the repository to solve this. Just run admin
with the -m flag. Remember to have no space between -m and its argument, and to quote
the replacement log message as you would a normal one:

floss$ cvs admin -ml1.17:°1 take back what I said about the customer.’ hello.c

I need to move files around without losing revision history

In the repository, copy (don’t move) the RCS files to the desired new location in the
project. They must remain in their old locations as well. Then, in a working copy, do:
floss$ rm oldfilel oldfile2 ...
floss$ cvs remove oldfilel oldfile2 ...
floss$ cvs commit -m removed from here oldfilel oldfile2 ...
When people do updates after that, CVS correctly removes the old files and brings the
new files into the working copies just as though they had been added to the repository in

148 Open Source Development With CVS

the usual way (except that they’ll be at unusually high revision numbers for supposedly
new files).

How can I get a list of all tags in a project?

Currently, there is no convenient way to do this in CVS. The lack is sorely felt by all
users, and I believe work is under way to make this feature available. By the time you read
this, a cvs tags command or something similar may be available.

Until then, there are workarounds. You can run cvs log -h and read the sections of the
output following the header symbolic names:. Or, if you happen to be on the repository
machine, you can just look at the beginnings of some of the RCS files directly in the
repository. All of the tags (branches and nonbranches) are listed in the symbols field:

floss$ head /usr/local/newrepos/hello.c,v
head 2.0;

access;

symbols

Release_1_0:1.22
Exotic_Greetings-2:1.21
merged-Exotic_Greetings-1:1.21
Exotic_Greetings-1:1.21
merged-Exotic_Greetings:1.21
Exotic_Greetings-branch:1.21.0.2
Root-of-Exotic_Greetings:1.21
start:1.1.1.1

jrandom:1.1.1;

locks; strict;

comment @ * Q;

How can I get a list of all projects in a repository?

As with getting a list of tags, this is not implemented in the most current version of
CVS, but it’s highly likely that it will be implemented soon. I imagine the command will
be called cvs list with a short form of cvs Is, and it probably will both parse the modules
file and list the repository subdirectories.

In the meantime, examining the CVSROOT /modules file (either directly or by running
cvs checkout -c) is probably your best bet. However, if no one has explicitly made a module
for a particular project, it won’t show up there.

Some commands fail remotely but not locally; how should I
debug?

Sometimes there’s a problem in the communication between the client and the server.
If so, it’s a bug in CVS, but how would you go about tracking down such a thing?

CVS gives you a way to watch the protocol between the client and server. Before you
run the command on the local (working copy) machine, set the environment variable CVS_
CLIENT_LOG. Here’s how in Bourne shell syntax:

Tips And Troubleshooting 149

floss$ CVS_CLIENT_LOG=clog; export CVS_CLIENT_LOG

Once that variable is set, CVS will record all communications between client and server
in two files whose names are based on the variable’s value:

floss$ 1s

cvs/ README. txt a-subdir/ b-subdir/ foo.gif hello.c
floss$ cvs update

7 clog.in

? clog.out

cvs server: Updating .

cvs server: Updating a-subdir

cvs server: Updating a-subdir/subsubdir
cvs server: Updating b-subdir

floss$ 1s

cvs/ a-subdir/ clog.in foo.gif
README. txt b-subdir/ clog.out hello.c
floss$

The ‘clog.in’ file contains everything that the client sent into the server, and ‘clog.out’
contains everything the server sent back out to the client. Here are the contents of clog.out,
to give you a sense of what the protocol looks like:
Valid-requests Root Valid-responses valid-requests Repository
Directory Max-dotdot Static-directory Sticky Checkin-prog Update-prog
Entry Kopt Checkin-time Modified Is-modified UseUnchanged Unchanged
Notify Questionable Case Argument Argumentx Global_option Gzip-stream
wrapper-sendme-rcsOptions Set expand-modules ci co update diff log add
remove update-patches gzip-file-contents status rdiff tag rtag import
admin export history release watch-on watch-off watch-add watch-remove
watchers editors init annotate noop
ok
M 7 clog.in
M ? clog.out

E cvs server: Updating .

E cvs server: Updating a-subdir

E cvs server: Updating a-subdir/subsubdir

E cvs server: Updating b-subdir

The clog.in file is even more complex, because it has to send revision numbers and other
per-file information to the server.

There isn’t space here to document the client/server protocol, but you can read the
cvsclient Info pages that were distributed with CVS for a complete description. You may
be able to figure out a good deal of it just from reading the raw protocol itself. Although
you probably won’t find yourself using client logging until you’ve eliminated all of the other
possible causes of a problem, it is an invaluable tool for finding out what’s really going on
between the client and server.

I do not see my problem covered in this chapter

Email an accurate and complete description of your problem to info-cvs@gnu.org, the
CVS discussion list. Its members are located in many different time zones, and I've usually

PP il

150 Open Source Development With CVS

gotten a response within an hour or two of sending a question. Please join the list by
sending email to info-cvs-request@gnu.org, so you can help answer questions, too.

I think I have discovered a bug in CVS; what do I do?

CVS is far from perfect — if you've already tried reading the manual and posting a
question on the mailing list, and you still think you’re looking at a bug, then you probably
are.

Send as complete a description of the bug as you can to bug-cvs@gnu.org (you can
also subscribe to that list; just use bug-cvs-request@gnu.org instead). Be sure to include
the version number of CVS (both client and server versions, if applicable), and a recipe for
reproducing the bug.

If you have written a patch to fix the bug, include it and mention on the subject line of
your message that you have a patch. The maintainers will be very grateful.

(Further details about these procedures are outlined in the node BUGS in the Cederqvist
manual and the file HACKING in the source distribution.)

I have implemented a new feature for CVS; to whom do I send it?

Same as with a bug: Send the patch to bug-cvs@gnu.org. Make sure you've read over
the HACKING file first, though.

How can I keep up with changes to CVS?

The troubleshooting techniques and known bugs described in this chapter are accurate
as of (approximately) CVS Version 1.10.7. Things move fast in the CVS world, however.
While T was writing the last few chapters, the unofficial mantle of CVS maintainership
passed from Cyclic Software to SourceGear, Inc (http://www.sourcegear.com), which
purchased Cyclic. SourceGear has publicly announced its intention to take an active role
in CVS maintainer-ship and has received Cyclic’s approval, which is more or less enough
to make it the "lead maintainer" of CVS as of right now. (The http://www.cyclic.com
address will continue to work, however, so all of the URLs given previously in this book
should remain valid.)

SourceGear is, at this very moment, busy organizing and cleaning up various patches
that have been floating around, with the intention of incorporating many of them into CVS.
Some of these patches will probably fix bugs listed previously, and others may afford new
troubleshooting tools to CVS users.

The best way to stay up to date with what’s going on is to read the NEWS file in your
CVS distribution, watch the mailing lists, and look for changes to the Cederqvist manual
and the online version of this book (http://cvsbook.red-bean.com).

CVS Reference 151

CVS Reference

This chapter is a complete reference to CVS commands, repository administrative files,
keyword substitution, run control files, working copy files, and environment variables —
everything in CVS as of CVS version 1.10.7 (more accurately, as of August 20, 1999).

Commands And Options

This section is a reference to all CVS commands. If you are not already familiar with
the syntactic conventions shared by most CVS commands, you should probably read the
relevant subsections before you look up any particular command.

Organization And Conventions

This section is organized alphabetically to make it easy for you to look up a particular
command or option. The following conventions are used:

Arguments to commands and options are in all-capitalized letters in the synopsis that
begins each explanation. (Note: in the treeware version of the book, meta-arguments
are italicized as well as capitalized; due to the limitations of standard terminal fonts, I
have omitted the italicization here.)

Optional items appear between square brackets: []. (This works out okay because
square brackets turn out not used in CVS syntaces.)

If you must choose one from a set, the choices are separated by bars, like this: x|y|z.
(And therefore forward slashes (/) should be interpreted literally — they do not divide
choices in a set.)

Plurals or ellipses indicate multiples, usually separated by whitespace. For example,
FILES means one or more files, but [FILES] means zero or more files. The entry
[&MOD...] means an ampersand followed immediately by a module name, then white-
space, then maybe another ampersand-module, and so on, zero or more times. (The
ellipsis is used because a plural would have left it unclear whether the ampersand is
needed only the first time or once for each module.)

When a plural is parenthesized, as in FILE(S), it means that although technically there
can be two or more files, usually there is only one.

REV is often used to stand for a revision argument. This is usually either a revision
number or a tag name. There are very few places in CVS where you can use one but
not the other, and those places are noted in the text.

General Patterns In CVS Commands

CVS commands follow this form:
cvs [GLOBAL_OPTIONS] COMMAND [OPTIONS] [FILES]

The second set of options is sometimes called command options. Because there are so
many of them, though, I'll just call them "options" in most places to save space.

Many commands are meant to be run within a working copy and, therefore, may be
invoked without file arguments. These commands default to all of the files in the current

152 Open Source Development With CVS

directory and below. So when I refer to the "file" or "files" in the text, I'm talking about
the files on which CVS is acting. Depending on how you invoked CVS, these files may or
may not have been explicitly mentioned on the command line.

Date Formats

Many options take a date argument. CVS accepts a wide variety of date formats — too
many to list here. When in doubt, stick with the standard ISO 8601 format:

1999-08-23

This means "23 August 1999" (in fact, "23 August 1999" is a perfectly valid date specifier
too, as long as you remember to enclose it in double quotes). If you need a time of day as
well, you can do this:

"1999-08-23 21:20:30 CDT"

You can even use certain common English constructs, such as "now", "yesterday", and
"12 days ago". In general, you can safely experiment with date formats; if CVS understands
your format at all, it most likely will understand it in the way you intended. If it doesn’t
understand, it will exit with an error immediately.

Global Options

Here are all the global options to CVS.

-—allow-root=REPOSITORY

The alphabetically first global option is one that is virtually never used on the com-
mand line. The —allow-root option is used with the pserver command to allow au-
thenticated access to the named repository (which is a repository top level, such as
‘/usr/local/newrepos’, not a project subdirectory such as ‘/usr/local/newrepos/myproj’).

This global option is virtually never used on the command line. Normally, the only place
you’d ever use it is in /etc/inetd.conf files (see [Repository Administration], page 63), which
is also about the only place the pserver command is used.

Every repository to be accessed via cvs pserver on a given host needs a corresponding
—allow-root option in ‘/etc/inetd.conf’. This is a security device, meant to ensure that
people can’t use a CVS pserver to gain access to private repositories.

(See [The Password-Authenticating Server|, page 72 also the node Password Authenti-
cation Server in the Cederqvist manual.)

—a

This authenticates all communications with the server. This option has no effect unless
you’re connecting via the GSSAPI server (gserver). GSSAPI connections are not covered
in this book, because they’re still somewhat rarely used (although that may change). (See
the nodes Global Options and GSSAPI Authenticated in the Cederqvist manual for more
information.)

CVS Reference 153

-b (Obsolete)

This option formerly specified the directory where the RCS binaries could be found.
CVS now implements the RCS functions internally, so this option has no effect (it is kept
only for backward compatibility).

-d REPOSITORY

This specifies the repository, which might be an absolute pathname or a more com-
plex expression involving a connection method, username and host, and path. If it is an
expression specifying a connection method, the general syntax is:

:METHOD : USERGHOSTNAME : PATH_TO_REPOSITORY
Here are examples using each of the connection methods:

:ext: jrandom@floss.red-bean.com: /usr/local/newrepos — Connects using rsh,
ssh, or some other external connection program. If the $CVS_RSH environment vari-
able is unset, this defaults to rsh; otherwise, it uses the value of that variable.

:server: jrandom@floss.red-bean.com:/usr/local/newrepos — Like :ext:, but
uses CVS’s internal implementation of rsh. (This may not be available on all plat-
forms.)

:pserver: jrandom@floss.red-bean.com: /usr/local/newrepos — Connects using
the password authenticating server (see [The Password-Authenticating Server|, page 72
in [Repository Administration], page 63; see also the [login|, page 174 command.)

:kserver: jrandom@floss.red-bean.com: /usr/local/newrepos — Connects using
Kerberos authentication.

:gserver: jrandom@floss.red-bean.com: /usr/local/newrepos — Connects using
GSSAPI authentication.

:fork: jrandom@floss.red-bean.com:/usr/local/newrepos — Connects to a local
repository, but using the client/server network protocol instead of directly accessing
the repository files. This is useful for testing or debugging remote CVS behaviors from
your local machine.

:local:jrandom@floss.red-bean.com: /usr/local/newrepos — Accesses a local
repository directly, as though only the absolute path to the repository had been
given.

-e EDITOR

Invokes EDITOR for your commit message, if the commit message was not specified on
the command line with the -m option. Normally, if you don’t give a message with -m, CVS
invokes the editor based on the $CVSEDITOR, $VISUAL, or $EDITOR environment variables,
which it checks in that order. Failing that, it invokes the popular Unix editor vi.

If you pass both the -e global option and the -m option to commit, the -e is ignored in
favor of the commit message given on the command line (that way it’s safe to use -e in a
‘.cvsrc’ file).

154 Open Source Development With CVS

-f

This global option suppresses reading of the ‘.cvsrc’ file.

~-help [COMMAND] or -H [COMMAND]

These two options are synonymous. If no COMMAND is specified, a basic usage message
is printed to the standard output. If COMMAND is specified, a usage message for that
command is printed.

--help-options

Prints out a list of all global options to CVS, with brief explanations.

--help-synonyms

Prints out a list of CVS commands and their short forms ("up" for "update", and so
on).

-1

Suppresses logging of this command in the ‘CVSRO0T/history’ file in the repository. The
command is still executed normally, but no record of it is made in the history file.

-n

Doesn’t change any files in the working copy or in the repository. In other words, the
command is executed as a "dry run" — CVS goes through most of the steps of the command
but stops short of actually running it.

This is useful when you want to see what the command would have done had you actually
run it. One common scenario is when you want to see what files in your working directory
have been modified, but not do a full update (which would bring down changes from the
repository). By running cvs -n update, you can see a summary of what’s been done locally,
without changing your working copy.

-q

This tells CVS to be moderately quiet by suppressing the printing of unimportant in-
formational messages. What is considered "important" depends on the command. For
example, in updates, the messages that CVS normally prints on entering each subdirec-
tory of the working copy are suppressed, but the one-line status messages for modified or
updated files are still printed.

CVS Reference 155

-Q

This tells CVS to be very quiet, by suppressing all output except what is absolutely
necessary to complete the command. Commands whose sole purpose is to produce some
output (such as diff or annotate), of course, still give that output. However, commands
that could have an effect independent of any messages that they may print (such as update
or commit) print nothing.

-r

Causes new working files to be created read-only (the same effect as setting the $CVSREAD
environment variable).

If you pass this option, checkouts and updates make the files in your working copy read-
only (assuming your operating system permits it). Frankly, I'm not sure why one would
ever want to use this option.

-s VARIABLE=VALUE

This sets an internal CVS variable named VARIABLE to VALUE.

On the repository side, the ‘CVSROO0T/*info’ trigger files can expand such variables to
values that were assigned in the -s option. For example, if ‘CVSRO0T/loginfo’ contains a
line like this

myproj /usr/local/bin/foo.pl ${=FISH}
and someone runs a commit from a myproj working copy like this
floss$ cvs -s FISH=carp commit -m "fixed the bait bug"

the ‘foo.pl’ script is invoked with carp as an argument. Note the funky syntax, though:
The dollar sign, equal sign, and curly braces are all necessary — if any of them are missing,
the expansion will not take place (at least not as intended). Variable names may contain
alphanumerics and underscores only. Although it is not required that they consist entirely
of capital letters, most people do seem to follow that convention.

You can use the -s flag as many times as you like in a single command. However, if
the trigger script refers to variables that aren’t set in a particular invocation of CVS, the
command still succeeds, but none of the variables are expanded, and the user sees a warning.
For example, if loginfo has this

myproj /usr/local/bin/foo.pl ${=FISH} ${=BIRD}
but the same command as before is run
floss$ cvs -s FISH=carp commit -m "fixed the bait bug"
the person running the command sees a warning something like this (placed last in the
output)
loginfo:31: no such user variable ${=BIRD}
and the ‘foo.pl’ script is invoked with no arguments. But if this command were run
floss$ cvs -s FISH=carp -s BIRD=vulture commit -m "fixed the bait bug"

there would be no warning, and both ${=FISH} and ${=BIRD} in loginfo would be cor-
rectly expanded. In either case, the commit itself would still succeed.

156 Open Source Development With CVS

Although these examples all use commit, variable expansion can be done with any CVS
command that can be noticed in a ‘CVSRO0T/’ trigger file — which is why the -s option is
global.

(See the section [Repository Administrative Files], page 184 later in this chapter for
more details about variable expansion in trigger files.)

-T DIR

Stores any temporary files in DIR instead of wherever CVS normally puts them (specif-
ically, this overrides the value of the $TMPDIR environment variable, if any exists). DIR
should be an absolute path.

This option is useful when you don’t have write permission (and, therefore, CVS doesn’t
either) to the usual temporary locations.

-t

Traces the execution of a CVS command. This causes CVS to print messages showing
the steps that it’s going through to complete a command. You may find it particularly
useful in conjunction with the -n global option, to preview the effects of an unfamiliar
command before running it for real. It can also be handy when you’re trying to discover
why a command failed.

-V Or —-version

Causes CVS to print out its version and copyright information and then exit with no
€rTor.

~W

Causes new working files to be created read-write (overrides any setting of the $CVSREAD
environment variable). Because files are created read-write by default anyway, this option
is rarely used.

If both -r and -w are passed, -w dominates.

=X

Encrypts all communications with the server. This option has no effect unless you're
connecting via the GSSAPI server (gserver). GSSAPI connections are not covered in this
book, because they’re still somewhat rarely used (although that may change). (See the
nodes Global Options and GSSAPI Authenticated in the Cederqvist manual for more in-
formation.)

CVS Reference 157

-z GZIPLEVEL

Sets the compression level on communications with the server. The argument GZI-
PLEVEL must be a number from 1 to 9. Level 1 is minimal compression (very fast, but
doesn’t compress much); Level 9 is highest compression (uses a lot of CPU time, but sure
does squeeze the data). Level 9 is only useful on very slow network connections. Most
people find levels between 3 and 5 to be most beneficial.

A space between -z and its argument is optional.

add
Synopsis: add [OPTIONS] FILES

Alternate names — ad, new
Requires — Working copy, repository
Changes — Working copy
Adds a new file or files to an existing project. Although the repository is contacted for

confirmation, the file does not actually appear in it until a subsequent commit is performed.
(See also [remove], page 176 and [import], page 169.)
Options:
-kKEYWORD_SUBSTITUTION_MODE - Specifies that the file is to be stored with
the given RCS keyword substitution mode. There is no space between the -k and its

argument. (See the section [Keyword Substitution (RCS Keywords)], page 182 later in
this chapter for a list of valid modes and examples.)

-m MESSAGE - Records MESSAGE as the creation message, or description, for the
file. This is different from a per-revision log message — each file has only one description.
Descriptions are optional.

As of version 1.10.7, there is a bug in CVS whereby the description is lost if you add
a file via client/server CVS. The rest of the add process seems to work fine, however,
if that’s any comfort.

admin

Synopsis: admin [OPTIONS] [FILES]
Alternate names — adm, rcs
Requires — Working copy, repository
Changes — Repository

This command is an interface to various administrative tasks — specifically, tasks appli-
cable to individual RCS files in the repository, such as changing a file’s keyword substitution
mode or changing a log message after it’s been committed.

Although admin behaves recursively if no files are given as arguments, you normally will
want to name files explicitly. It’s very rare for a single admin command to be meaningful
when applied to all files in a project, or even in a directory. Accordingly, when the following
explanations refer to the "file", they mean the file or (rarely) files passed as arguments to
the admin command.

158 Open Source Development With CVS

If there is a system group named cvsadmin on the repository machine, only members
of that group can run admin (with the exception of the cvs admin -k command, which is
always permitted). Thus you can disallow admin for all users by setting the group to have
no users.

Options:
-AOLDFILE - (Obsolete) Appends the RCS access list of OLDFILE to the access list

of the file that is the argument to admin. CVS ignores RCS access lists, so this option
is useless.

-a USERI1 [,USER2...] — (Obsolete) Appends the users in the comma-separated list to
the access list of the file. Like -A, this option is useless in CVS.

-bREV — Sets the revision of the file’s default branch (usually the trunk) to REV. You
won’t normally need this option, because you can usually get the revisions you need
via sticky tags, but you may use it to revert to a vendor’s version if you're using vendor
branches. There should be no space between the -b and its argument.

-cCCOMMENT _PREFIX - (Obsolete) Sets the comment leader of the file to COM-
MENT_PREFIX. The comment leader is not used by CVS or even by recent versions
of RCS; therefore, this option is useless and is included only for backward-compatibility.

-eUSER1[,USER2...] — (Obsolete) Removes the usernames appearing in the comma-
separated list from the access list of the RCS file. Like -a and -A, this option is now
useless in CVS.

-i or -I — These two are so obsolete I'm not even going to tell you what they used to
do. (See the Cederqvist manual if you're curious.)

-kMODE - Sets the file’s default keyword substitution mode to MODE. This option
behaves like the -k option to add, only it gives you a way to change a file’s mode after
it’s been added. (See the section [Keyword Substitution (RCS Keywords)], page 182
later in this chapter for valid modes.) There should be no space between -k and its
argument.

-L - Sets locking to strict. (See -1 below.)

-][REV] — Locks the file’s revision to REV. If REV is omitted, it locks the latest revision
on the default branch (usually the trunk). If REV is a branch, it locks the latest revision
on that branch.

The intent of this option is to give you a way to do reserved checkouts, where only one
user can be editing the file at a time. I'm not sure how useful this really is, but if you
want to try it, you should probably do so in conjunction with the rcslock.pl script in
the CVS source distribution’s contrib/ directory. See comments in that file for further
information. Among other things, those comments indicate that the locking must be
set to strict. (See -L.) There is no space between -1 and its argument.

-mREV:MESSAGE — Changes the log message for revision REV to MESSAGE. Very
handy — along with -k, this is probably the most frequently used admin option. There
are no spaces between option and arguments or around the colon between the two
arguments. Of course, MESSAGE may contain spaces within itself (in which case,
remember to surround it with quotes so the shell knows it’s all one thing).

-NNAME[:[REV]] — Just like -n, except it forces the override of any existing assignment
of the symbolic name NAME, instead of exiting with error.

CVS Reference 159

-nNAME[:[REV]] — This is a generic interface to assigning, renaming, and deleting tags.
There is no reason, as far as I can see, to prefer it to the tag command and the various
options available there (-d, -r, -b, -f, and so on). I recommend using the tag command
instead. The NAME and optional REV can be combined in the following ways:

If only the NAME argument is given, the symbolic name (tag) named NAME is
deleted.

If NAME: is given but no REV, NAME is assigned to the latest revision on the
default branch (usually the trunk).

If NAME:REV is given, NAME is assigned to that revision. REV can be a symbolic
name itself, in which case it is translated to a revision number first (can be a branch
number).

If REV is a branch number and is followed by a period (.), NAME is attached
to the highest revision on that branch. If REV is just $§, NAME is attached to
revision numbers found in keyword strings in the working files.

In all cases where a NAME is assigned, CVS exits with an error if there is already
a tag named NAME in the file (but see -N). There are no spaces between -n and
its arguments.

-oORANGE - Deletes the revisions specified by RANGE (also known as "outdating",
hence the -0). Range can be specified in one of the following ways:

REV1:REV2 — Collapses all intermediate revisions between REV1 and REV2,
so that the revision history goes directly from REV1 to REV2. After this, any
revisions between the two no longer exist, and there will be a noncontiguous jump
in the revision number sequence.

=REV — Collapses all revisions between the beginning of REV’s branch (which
may be the beginning of the trunk) and REV, noninclusively of course. REV is
then the first revision on that line.

REV:: — Collapses all revisions between REV and the end of its branch (which
may be the trunk). REV is then the last revision on that line.

REV — Deletes the revision REV (-01.8 would be equivalent to -01.7::1.9).

REV1:REV2 — Deletes the revisions from REV1 to REV2, inclusive. They must
be on the same branch. After this, you cannot retrieve REV1, REV2, or any of
the revisions in between.

:REV — Deletes revisions from the beginning of the branch (or trunk) to REV,
inclusive. (See the preceding warning.)

REV: — Deletes revisions from REV to the end of its branch (or trunk), inclusive.
(See the preceding warning.)

None of the revisions being deleted may have branches or locks. If any of the
revisions have symbolic names attached, you have to delete them first with tag -d
or admin -n. (Actually, right now CVS only protects against deleting symbolically
named revisions if you're using one of the :: syntaxes, but the single-colon syntaxes
may soon change to this behavior as well.)

Instead of using this option to undo a bad commit, you should commit a new
revision that undoes the bad change. There are no spaces between -0 and its
arguments.

160

an

out

Open Source Development With CVS

-q — Tells CVS to run quietly — don’t print diagnostic messages (just like the global -q
option).

-sSTATE[:REV] — Sets the state attribute of revision REV to STATE. If REV is omit-
ted, the latest revision on the default branch (usually the trunk) is used. If REV is a
branch tag or number, the latest revision on that branch is used.

Any string of letters or numbers is acceptable for STATE; some commonly used states
are Exp for experimental, Stab for stable, and Rel for released. (In fact, CVS sets the
state to Exp when a file is created.) Note that CVS uses the state dead for its own
purposes, so don’t specify that one.

States are displayed in cvs log output, and in the $Log and $State RCS keywords in
files. There is no space between -s and its arguments.

-t[DESCFILE] — Replaces the description (creation message) for the file with the con-
tents of DESCFILE, or reads from standard input if no DESCFILE is specified.

This useful option, unfortunately, does not currently work in client/server CVS. In
addition, if you try it in client/server and omit DESCFILE, any existing description
for the file is wiped out and replaced with the empty string. If you need to rewrite
a file’s description, either do so using only local CVS on the same machine as the
repository or -t-STRING (see below). There is no space between -t and its argument.
DESCFILE may not begin with a hyphen (-).

-t-STRING — Like -t, except that STRING is taken directly as the new description.
STRING may contain spaces, in which case you should surround it with quotes. Unlike
the other syntax for -t, this works in client/server as well as locally.

-U — Sets locking to nonstrict. (See -1 and -L options, discussed earlier.)

-u[REV] — Unlocks revision REV. (See -1.) If REV is omitted, CVS unlocks the latest
lock held by the caller. If REV is a branch, CVS unlocks the latest revision on that
branch. If someone other than the owner of a lock breaks the lock, a mail message is
sent to the original locker. The content for this message is solicited on standard input
from the person breaking the lock. There is no space between -u and its argument.
-VRCS_VERSION_NUMBER - (Obsolete) This used to be a way to tell CVS to produce
RCS files acceptable to previous versions of RCS. Now the RCS format used by CVS is
drifting away from the RCS format used by RCS, so this option is useless. Specifying
it results in an error.

-xSUFFIX — (Obsolete) Theoretically, this gives you a way to specify the suffix for RCS
file names. However, CVS and related tools all depend on that suffix being the default
(,v), so this option does nothing.

notate

Synopsis: annotate [OPTIONS] [FILES]
Alternate name — ann
Requires — Working copy, repository
Changes — Nothing

Shows information on who last modified each line of each file and when. Each line of
put corresponds to one line of the file. From left to right, the line displays the revision

CVS Reference 161

number of the last modification of that line, a parenthetical expression containing the user
and date of the modification, a colon, and the contents of the line in the file.
For example, if a file looks like this

this is a test file
it only has too lines
I mean "two"

the annotations for that file could look like this

1.1 (jrandom 22-Aug-99): this is a test file
1.1 (jrandom 22-Aug-99): it only has too lines
1.2 (jrandom 22-Aug-99): I mean "two"

from which you would know that the first two lines were in the initial revision, and the
last line was added or modified (also by jrandom) in Revision 1.2.

Options:
-D DATE - Shows the annotations as of the latest revision no later than DATE.

-f — Forces use of the head revision if the specified tag or date is not found. You can
use this in combination with -D or -r to ensure that there is some output from the
annotate command, even if only to show Revision 1.1 of the file.

-1 — Local. Runs in the current working directory only. Does not descend into subdi-
rectories.

-R - Recursive. Descends into subdirectories (the default). The point of the -R option
is to override any -1 option set in a .cvsrc file.

-r REV — Shows annotations as of revision REV (can be a revision number or a tag).

checkout

Synopsis: checkout [OPTIONS] PROJECT(S)
Alternate names — co, get
Requires — Repository

Changes — Current directory

Checks out a module from the repository into a working copy. The working copy is
created if it doesn’t exist already and updated if it does. (See also [update], page 179.)

Options:
-A — Resets any sticky tags, sticky dates, or sticky -k (RCS keyword substitution mode)

options. This is like the -A option to update and is probably more often used there
than with checkout.

-¢ — Doesn’t check anything out; just prints the CVSROOT /modules file, sorted, on
standard output. This is a good way to get an overview of what projects are in a
repository. However, a project without an entry in modules does not appear (this
situation is quite normal because the name of the project’s top-level directory in the
repository functions as the project’s "default" module name).

-D DATE — Checks out the latest revisions no later than DATE. This option is sticky,

so you won’t be able to commit from the working copy without resetting the sticky
date. (See -A.) This option also implies -P, described later.

162 Open Source Development With CVS

-d DIR - Creates the working copy in a directory named DIR, instead of creating a
directory with the same name as the checked-out module. If you check out only a
portion of a project and the portion is located somewhere beneath the project’s top
level, the locally empty intermediate directories are omitted. You can use -N to suppress
this directory-collapsing behavior.

-f — Forces checkout of the head revision if the specified tag or date is not found. Most
often used in combination with -D or -r to ensure that something always gets checked
out.

-j REV[:DATE] or -j REV1[:DATE] -j REV2[:DATE] — Joins (merges) two lines of de-
velopment. This is just like the -j option to update, where it is more commonly used.
(See [update], page 179 for details.)

-k MODE - Substitutes RCS keywords according to MODE (which can override the
default modes for the files). (See the section [Keyword Substitution (RCS Keywords)],
page 182 later in this chapter for valid modes.) The mode chosen will be sticky — future
updates of the working copy will keep that mode.

-1 — Local. Checks out the top-level directory of the project only. Does not process
subdirectories.

-N - Suppresses collapsing of empty directories with -d option. (See -d.)

-n— Doesn’t run any checkout program that was specified with -o in CVSROOT /modules.
(See the section [Repository Administrative Files|, page 184 later in this chapter for
more on this.)

-P — Prunes empty directories from the working copy (like the -P option to update).
-p — Checks files out to standard output, not into files (like the -p option to update).
-R - Checks out subdirectories as well (the default). (See also the -f option.)

-t TAG — Checks out the project as of revision TAG (it would make almost no sense
to specify a numeric revision for TAG, although CVS lets you). This option is sticky
and implies -P.

-s — Like -c, but shows the status of each module and sorts by status. (See [mod-
ules], page 188 in the section [Repository Administrative Files], page 184 for more
information.)

commit

Synopsis: commit [OPTIONS] [FILES]
Alternate names — ci, com
Requires — Working copy, repository
Changes — Repository (and working copy administrative area)
Commits changes from a working copy to the repository.
Options:
-F MSGFILE - Uses the contents of MSGFILE for the log message instead of invoking
an editor. This option cannot be combined with -m.

-f — Forces commit of a new revision even if no changes have been made to the files.
commit does not recurse with this option (it implies -1). You can force it to recurse
with -R.

CVS Reference 163

This meaning of -f is at odds with its usual meaning ("force to head revision") in CVS
commands.

-1 — Local. Commits changes from the current directory only. Doesn’t descend into
subdirectories.

-m MESSAGE — Uses MESSAGE as the log message instead of invoking an editor.
Cannot be used with -F.

-n — Does not run any module program. (See the section [Repository Administrative
Files], page 184 in this chapter for information about module programs.)

-R — Commits changes from subdirectories as well as from the current directory (the
default). This option is used only to counteract the effect of a -1 in .cvsrc.

-r REV — Commits to revision REV, which must be either a branch or a revision on
the trunk that is higher than any existing revision. Commits to a branch always go
on the tip of the branch (extending it); you cannot commit to a specific revision on a
branch. Use of this option sets the new revision as a sticky tag on the file. This can
be cleared with update -A.

The -r REV option implies -f as well. A new revision is committed even if there are no
changes to commit.

diff
Synopsis: diff [OPTIONS] [FILES]
Alternate names — di, dif

Requires — Working copy, repository
Changes — Nothing

Shows the difference between two revisions (in Unix diff format). When invoked with
no options, CVS diffs the repository base revisions against the (possibly uncommitted)
contents of the working copy. The base revisions are the latest revisions of this working
copy retrieved from the repository; note that there could be even later revisions in the
repository, if someone else committed changes but this working copy hasn’t been updated
yet. (See also [rdiff], page 175.)

Options:
-D DATE - Diffs against the latest revisions no later than DATE. Behaves like -r REV,
except uses dates rather than revisions. (See -r for details.)
-k MODE — Expands RCS keywords in the diffs according to MODE. (See the section
[Keyword Substitution (RCS Keywords)], page 182 in this chapter for possible modes.)
-1 — Local. If no files were specified as arguments, this option diffs files in the current
directory, but does not descend into subdirectories.

-R — Recursive. This option is the opposite of -1. This is the default behavior, so the
only reason to specify -R is to counteract a -1 in a .cvsrc file.

-r REV or -r REV1 -r REV2 — Diffs against (or between) the specified revisions. With
one -t option, this diffs revision REV against your working copy of that file (so when
multiple files are being diffed, REV is almost always a tag). With two -r options, it
diffs REV1 against REV2 for each file (and the working copy is, therefore, irrelevant).

164 Open Source Development With CVS

The two revisions can be in any order - REV1 does not have to be an earlier revision
than REV2. The output reflects the direction of change. With no -r options, it shows
the difference between the working file and the revision on which it is based.

Diff Compatibility Options

In addition to the preceding options, cvs diff also shares a number of options with the
GNU version of the standard command-line diff program. Following is a complete list of
these options, along with an explanation of a few of the most commonly used ones. (See
the GNU diff documentation for the others.)

-0-1-2-3-4-5-6-7-8-9
—--binary
—-brief
--changed-group-format=ARG
-c
-C NLINES
--context [=LINES]
-e ——ed
-t --expand-tabs
-f --forward-ed
——horizon-lines=ARG
——ifdef=ARG
-w --ignore-all-space
-B --ignore-blank-lines
-i --ignore-case
-I REGEXP
--ignore-matching-lines=REGEXP

-b --ignore-space-change
-T —--initial-tab
-L. LABEL

—--label=LABEL
—-left-column
-d --minimal
-N --new-file
—-new-line-format=ARG
—-o0ld-line-format=ARG

--paginate

-n --rcs

-s --report-identical-files
P

—-show-c-function

-y —--side-by-side

-F REGEXP
--show-function-1line=REGEXP
-H --speed-large-files
——suppress—common-lines

-a ——text
--unchanged-group-format=ARG
-u

CVS Reference 165

-U NLINES
--unified [=LINES]
-V ARG
-W COLUMNS
--width=COLUMNS

Following are the GNU diff options most frequently used with cvs diff.

-B - Ignores differences that are merely the insertion or deletion of blank lines (lines
containing nothing but whitespace characters).

-b — Ignores differences in the amount of whitespace. This option treats all whitespace
sequences as being equal and ignores whitespace at line end. More technically, this
option collapses each whitespace sequence in the input to a single space and removes
any trailing whitespace from each line, before taking the diff. (See also -w.)

-¢ — Shows output in context diff format, defaulting to three lines of context per differ-
ence (for the sake of the patch program, which requires at least two lines of context).

-C NUM - context=NUM - Like -c, but with NUM lines of context.

-i — Compares case insensitively. Treats upper- and lowercase versions of a letter as the
same.

-u — Shows output in unified diff format.

-w — Ignores all whitespace differences, even when one side of the input has whitespace
where the other has none. Essentially a stronger version of -b.

edit

Synopsis: edit [OPTIONS] [FILES)]
Alternate names — None
Requires — Working copy, repository
Changes — Permissions in working copy, watchlist in repository
Signals that you are about to begin editing a watched file or files. Also adds you as a

temporary watcher to the file’s watch list (you’ll be removed when you do cvs unedit). (See
also [watch], page 181, [watchers], page 181, [unedit], page 179, and [editors], page 166.)

Options:
-a ACTIONS — Specifies for which actions you want to be a temporary watcher. AC-

TIONS should be either edit, unedit, commit, all, or none. (If you don’t use -a, the
temporary watch will be for all actions.)

-1 — Local. Signals editing for files in the current working directory only.

-R — Recursive (this is the default). Opposite of b; you would only need to pass -R to
counteract a -1 in a .cvsrc file.

editors

Synopsis: editors [OPTIONS] [FILES]
Alternate names — None

Requires — Working copy, repository

166 Open Source Development With CVS

Changes — Nothing
Shows who is currently editing a watched file. (See also [watch], page 181, [watchers],
page 181, [edit], page 165, and [unedit], page 179.)
Options:
-1 — Local. Views editors for files in current directory only.

-R — Recursive. Views editors for files in this directory and its subdirectories (the
default). You may need to pass -R to counteract a -1 in a .cvsrc file, though.

export

Synopsis: export [OPTIONS] PROJECT(S)

Alternate names — exp, ex

Requires — Repository

Changes — Current directory
Exports files from the repository to create a project tree that is not a working copy (has

no CVS/ administrative subdirectories). Useful mainly for packaging distributions.

Options:

-D DATE - Exports the latest revisions no later than DATE.

-d DIR - Exports into DIR (otherwise, defaults to the module name).

-f — Forces use of head revisions, if a given tag or date would result in nothing being
found (for use with -D or -r).

-k MODE - Expands RCS keywords according to MODE. (See the section [Keyword
Substitution (RCS Keywords)], page 182 later in this chapter.)

-1 — Local. Exports only the top level of the project, no subdirectories.

-N — Doesn’t "collapse" empty intermediate directories. This option is like the -N
option to checkout (see [checkout], page 161).

-n — Does not run a module program as may be specified in ‘CVSRO0T/modules’. (See
[Repository Administrative Files], page 184 later in this chapter for more about this.)

-P — Prunes empty directories (like the -P option to checkout or update).

-R — Recursive. Exports all subdirectories of the project (the default). The only reason
to specify -R is to counteract a -1 in a ‘.cvsrc’ file.

-r REV — Exports revision REV. REV is almost certainly a tag name, not a numeric
revision.

gserver

Synopsis: gserver

This is the GSSAPI (Generic Security Services API) server. This command is not
normally run directly by users. Instead, it is started up on the server side when a user
connects from a client with the :gserver: access method:

CVS Reference 167

cvs —-d :gserver:floss.red-bean.com:/usr/local/newrepos checkout myproj
GSSAPI provides, among other things, Kerberos Version 5; for Kerberos Version 4, use
:kserver:.

Setting up and using a GSSAPI library on your machines is beyond the scope of this
book. (See the node GSSAPI Authenticated in the Cederqvist manual for some useful hints,
however.)

Options: None.

history

Synopsis: history [OPTIONS] [FILENAME_SUBSTRING(S)]
Alternate names — hi, his
Requires — Repository, CVSROOT /history
Changes — Nothing

Shows a history of activity in the repository. Specifically, this option shows records of
checkouts, commits, rtags, updates, and releases. By default, the option shows checkouts
(but see the -x option). This command won’t work if there’s no CVSROOT /history file in
the repository.

The history command differs from other CVS commands in several ways. First, it must
usually be given options to do anything useful (and some of those options mean different
things for history than they do elsewhere in CVS). Second, instead of taking full file names
as arguments, it takes one or more substrings to match against file names (all records
matching at least one of those substrings are retrieved). Third, history’s output looks a
lot like line noise until you learn to read it, so I'll explain the output format in a special
section, after the options. (See also [log], page 172.)

Options:
-a — Shows history for all users (otherwise, defaults to self).

-b STR — Shows data back to record containing string STR in the module name, file
name, or repository path.

-¢ — Reports commits.
-D DATE - Shows data since DATE (the usual CVS date formats are available).
-e — Everything — reports on all record types.

-f FILE — Reports the most recent event concerning FILE. You can specify this option
multiple times. This is different from the usual meaning of -f in CVS commands: "Force
to head revision as a last resort."

-1 - Shows the record representing the last (as in "most recent") event of each project.
This is different from the usual meaning of -1 in CVS commands: "Run locally, do not
recurse."

-m MODULE — This provides a full report about MODULE (a project name). You
can specify this option multiple times.

-n MODULE - Reports the most recent event about MODULE. For example, checking
out the module is about the module itself, but modifying or updating a file inside the
module is about that file, not about the module. You can specify this option multiple

168

Open Source Development With CVS

times. This is different from the usual meaning of -n in CVS commands: "Don’t run a
CVSROOT /modules program."

-0 — Shows checkout records (the default).
-p REPOS - Shows data for a particular directory in the repository. You can specify

this option multiple times. The meaning of this option differs from the usual meaning
of -p in CVS commands: "Pipe the data to standard output instead of a file."

This option appears to be at least partially broken as of summer 1999.

-r REV — Shows records referring to revisions since the revision or tag named REV
appears in individual RCS files. Each RCS file is searched for the revision or tag.

-T — Reports on all tag events.
-t TAG — Shows records since tag TAG was last added to the history file. This differs

from the -r flag in that it reads only the CVSROOT /history file, not the RCS files, and
is therefore much faster.

-u USER - Shows events associated with USER. You can specify this option multiple
times.

-w — Shows records that are associated with the same working directory from which
you are invoking history.

-X HISTORYFILE — Uses HISTORYFILE instead of CVSROOT /history. This option
is mainly for debugging and is not officially supported; nevertheless, you may find it
useful (perhaps for generating human-readable reports from old history files you've
kept around).

-x TYPES — Reports on events specified in TYPES. Each type is represented by a

single letter, from the set ‘TOEFWUCGMAR’; any number of letters can be combined. Here
is what they mean:

T — Tag

O — Checkout
E — Export

F — Release

W — Update (newly obsolete file removed from working copy)
U - Update (file was checked out over user file)

C - Update (merge, with conflicts)

G — Update (merge, no conflicts)

M — Commit (file was modified)

A — Commit (file was added)

R — Commit (file was removed)

The default, if no -x option is given, is to show checkouts (like -x 0).

-z ZONE — Displays times in output as for time zone ZONE. ZONE is an abbreviated
time zone name, such as UTC, GMT, BST, CDT, CCT, and so on. A complete list of
time zones is available in the TimezoneTable in the file lib/getdate.c in the CVS source
distribution.

History Output

CVS Reference 169

The output of the history command is a series of lines; each line represents one "history
event" and starts with a single code letter indicating what type of event it is. For example:

floss$ cvs history -D yesterday -x TMO

M 08/21 20:19 +0000 jrandom 2.2 baar myproj == <remote>

M 08/22 04:18 +0000 jrandom 1.2 README myproj == <remote>

0 08/22 05:15 +0000 jrandom myproj =myproj= ~/src/*

M 08/22 05:33 +0000 jrandom 2.18 README. txt myproj == “/src/myproj
0 08/22 14:25 CDT jrandom myproj =myproj= ~/src/x*

0 08/22 14:26 CDT jrandom [99.08.23.19.26.03] myproj =myproj= ~/src/*

0 08/22 14:28 CDT jrandom [Exotic_Greetings-branch] myproj =myproj= ~/src/*

The code letters are the same as for the -x option just described. Following the code
letter is the date of the event (expressed in UTC/GMT time, unless the -z option is used),
followed by the user responsible for the event.

After the user might be a revision number, tag, or date, but only if such is appropriate
for the event (date or tag will be in square brackets and formatted as shown in the preceding
example). If you commit a file, it shows the new revision number; if you check out with
-D or -r, the sticky date or tag is shown in square brackets. For a plain checkout, nothing
extra is shown.

Next comes the name of the file in question, or module name if the event is about a
module. If the former, the next two things are the module/project name and the location
of the working copy in the user’s home directory. If the latter, the next two things are
the name of the module’s checked-out working copy (between two equal signs), followed by
its location in the user’s home directory. (The name of the checked-out working copy may
differ from the module name if the -d flag is used with checkout.)

import

Synopsis: import [OPTIONS] REPOSITORY VENDOR_TAG RELEASE _TAG(S)
Alternate names — im, imp
Requires — Repository, current directory (the source directory)
Changes — Repository
Imports new sources into the repository, either creating a new project or creating a new
vendor revision on a vendor branch of an existing project. (See [Advanced CVS], page 95

for a basic explanation of vendor branches in import, which will help you to understand the
following.)

It’s normal to use import to add many files or directories at once or to create a new
project. To add single files, you should use add.

Options:

-b BRANCH - Imports to vendor branch BRANCH. (BRANCH is an actual branch
number, not a tag.) This is rarely used but can be helpful if you get sources for the
same project from different vendors. A normal import command assumes that the
sources are to be imported on the default vendor branch, which is "1.1.1". Because it
is the default, you normally don’t bother to specify it with -b:

floss$ cvs import -m "importing from vendor 1" theirproj THEM1 THEM1-0

170 Open Source Development With CVS

To import to a vendor branch other than the default, you must specify a different
branch number explicitly:

floss$ cvs import -b 1.1.3 -m "from vendor 2" theirproj THEM2 THEM2-0

The 1.1.3 branch can absorb future imports and be merged like any other vendor
branch. However, you must make sure any future imports that specify -b 1.1.3 also
use the same vendor tag (THEM2). CVS does not check to make sure that the vendor
branch matches the vendor tag. However, if they mismatch, odd and unpredictable
things will happen.

Vendor branches are odd-numbered, the opposite of regular branches.

-d — Takes the file’s modification time as the time of import instead of using the current
time. This does not work with client/server CVS.

-I NAME — Gives file names that should be ignored in the import. You can use
this option multiple times in one import. Wildcard patterns are supported: *.foo
means ignore everything ending in ‘.foo’. (See [cvsignore], page 186 in [Repository
Administrative Files|, page 184 for details about wildcards.)

The following file and directory names are ignored by default:

.BAK
.elc
.exe
.1n

.0

.0bj
.olb
.old
.orig
.rej
.S0

Z
.del-x*
.make.state
.nse_depinfo
core

CvVs
CVS.adm
cvslog.*
RCS
RCSLOG

¥ X K K K K X X X X ¥ ¥ ¥ *

CVS Reference 171

SCCS
tags
TAGS

You can suppress the ignoring of those file name patterns, as well as any specified
in ‘.cvsignore’, ‘CVSRO0T/cvsignore’, and the $CVSIGNORE environment variable, by
using -I !. That is,

floss$ cvs import -I ! -m "importing the universe" proj VENDOR VENDOR_O

imports all files in the current directory tree, even those that would otherwise be
ignored.

Using a -I ! clears whatever ignore list has been created to that point, so any -I options
that came before it would be nullified, but any that come after will still count. Thus,

floss$ cvs import -I ! -I README.txt -m "some msg" theirproj THEM THEM_O
is not the same as

floss$ cvs import -I README.txt -I ! -m "some msg" theirproj THEM THEM_O
The former ignores (fails to import) README.txt, whereas the latter imports it.

-k MODE - Sets the default RCS keyword substitution mode for the imported files.
(See [Keyword Substitution (RCS Keywords)], page 182 later in this chapter for a list
of valid modes.)

-m MESSAGE — Records MESSAGE as the import log message.

-W SPEC — Specifies filters based on file names that should be in effect for the import.
You can use this option multiple times. (See [cvswrappers|, page 186 in [Repository
Administrative Files|, page 184 for details about wrapper specs.)

init
Synopsis: init NEW_REPOSITORY
Alternate names — None
Requires — Location for new repository
Creates — Repository
Creates a new repository (that is, a root repository in which many different projects are
stored). You will almost always want to use the global -d option with this, as in

floss$ cvs -d /usr/local/yet_another_repository init

because even if you have a CVSROOT environment variable set, it’s probably pointing
to an existing repository, which would be useless and possibly dangerous in the context
of this command. (See [Repository Administration]|, page 63 for additional steps that you
should take after initializing a new repository.)

Options: None.

kserver

Synopsis: kserver

This is the Kerberos server. (If you have Kerberos libraries Version 4 or below — Version
5 just uses GSSAPI, see [gserver], page 167.) This command is not normally run directly

172 Open Source Development With CVS

by users but is instead started up on the server side when a user connects from a client with
the :kserver: access method:

cvs —d :kserver:floss.red-bean.com:/usr/local/newrepos checkout myproj

Setting up and using Kerberos on your machine is beyond the scope of this book. (How-
ever, see the node Kerberos Authenticated in the Cederqvist manual for some useful hints.)

Options: None.

log

Synopsis: log [OPTIONS] [FILES]
Alternate names — lo, rlog
Requires — Working copy, repository
Changes — Nothing

Shows log messages for a project, or for files within a project. The output of log is not
quite in the same style as the output of other CVS commands, because log is based on an
older RCS program (rlog). Its output format gives a header, containing various pieces of
non-revision-specific information about the file, followed by the log messages (arranged by
revision). Each revision shows not merely the revision number and log message, but also
the author and date of the change and the number of lines added or deleted. All times are
printed in UTC (GMT), not local time.

Because log output is per file, a single commit involving multiple files may not immedi-
ately appear as a conceptually atomic change. However, if you read all of the log messages
and dates carefully, you may be able to reconstruct what happened. (For information about
a tool that can reformat multifile log output into a more readable form, see [cvs2cl — Gen-
erate GNU-Style ChangeLogs|, page 204 in [Third-Party Tools], page 197 for details.) (See
also [history], page 167.)

Options:

As you read over the following filtering options, it may not be completely clear how
they behave when combined. A precise description of log’s behavior is that it takes the
intersection of the revisions selected by -d, -s, and -w, intersected with the union of those
selected by -b and -r.

-b — Prints log information about the default branch only (usually the highest branch
on the trunk). This is usually done to avoid printing the log messages for side branches
of development.
-dDATES — Prints log information for only those revisions that match the date or date
range given in DATES, a semicolon-separated list. Dates can be given in any of the
usual date formats (see [Date Formats|, page 152 earlier in this section) and can be
combined into ranges as follows:
DATE1<DATE2 - Selects revisions created between DATE1 and DATE2. If
DATEL is after DATE2, use > instead; otherwise, no log messages are retrieved.

<DATE DATE> — All revisions from DATE or earlier.
>DATE DATE< — All revisions from DATE or later.

DATE — Just selects the most recent single revision from DATE or earlier.

CVS Reference 173

You may use <= and >= instead of < and > to indicate an inclusive range (otherwise,
ranges are exclusive). Multiple ranges should be separated with semicolons, for example

floss$ cvs log -d"1999-06-01<1999-07-01;1999-08-01<1999-09-01"

selects log messages for revisions committed in June or August of 1999 (skipping July).
There can be no space between -d and its arguments.

-h — Prints only the header information for each file, which includes the file name,
working directory, head revision, default branch, access list, locks, symbolic names
(tags), and the file’s default keyword substitution mode. No log messages are printed.

-1 — Local. Runs only on files in the current working directory.

-N — Omits the list of symbolic names (tags) from the header. This can be helpful when
your project has a lot of tags but you’re only interested in seeing the log messages.

-R — Prints the name of the RCS file in the repository.

This is different from the usual meaning of -R: "recursive". There’s no way to override
a -1 for this command, so don’t put log -1 in your .cvsrc.

-TREVS — Shows log information for the revisions specified in REVS, a comma-
separated list. REVS can contain both revision numbers and tags. Ranges can be
specified like this:

REV1:REV2 — Revisions from REV1 to REV2 (they must be on the same branch).
:REV — Revisions from the start of REV’s branch up to and including REV.
REV: — Revisions from REV to the end of REV’s branch.

BRANCH - All revisions on that branch, from root to tip.

BRANCHI1:BRANCH2 — A range of branches — all revisions on all the branches
in that range.

BRANCH. — The latest (tip) revision on BRANCH.
Finally, a lone -r, with no argument, means select the latest revision on the default
branch (normally the trunk). There can be no space between -r and its argument.
If the argument to -r is a list, it is comma-separated, not semicolon-separated like -d.

-sSTATES - Selects revisions whose state attribute matches one of the states given in
STATES, a comma-separated list. There can be no space between -s and its argument.

If the argument to -s is a list, it is comma-separated, not semicolon-separated like -d.
-t — Like -h, but also includes the file’s description (its creation message).

-wUSERS — Selects revisions committed by users whose usernames appear in the
comma-separated list USERS. A lone -w with no USERS means to take the username
of the person running cvs log.

Remember that when user aliasing is in effect (see the section [The Password-
Authenticating Server|, page 72 in [Repository Administration], page 63), CVS records
the CVS username, not the system username, with each commit. There can be no
space between -w and its argument.

If the argument to -w is a list, it is comma-separated, not semicolon-separated like -d.

174 Open Source Development With CVS

login

Synopsis: login
Alternate names — logon, lgn
Requires — Repository
Changes — ~/.cvspass file
Contacts a CVS server and confirms authentication information for a particular repos-
itory. This command does not affect either the working copy or the repository; it just
confirms a password (for use with the :pserver: access method) with a repository and stores
the password for later use in the .cvspass file in your home directory. Future commands

accessing the same repository with the same username will not require you to rerun login,
because the client-side CVS will just consult the .cvspass file for the password.

If you use this command, you should specify a repository using the pserver access method,
like this

floss$ cvs -d :pserver:jrandom@floss.red-bean.com:/usr/local/newrepos
or by setting the CVSROOT environment variable.
If the password changes on the server side, you have to rerun login.

Options: None.

logout

Synopsis: logout
Alternate names — None
Requires — ~/.cvspass file

Changes — ~/.cvspass file

The opposite of login — removes the password for this repository from .cvspass.

Options: None.

pserver

Synopsis: pserver
Alternate names — None
Requires — Repository
Changes — Nothing
This is the password-authenticating server. This command is not normally run directly
by users but is started up from ‘/etc/inetd.conf’ on the server side when a user connects
from a client with the :pserver: access method. (See also the [login], page 174 and [logout],
page 174 commands, and the file ‘.cvspass’ in the [Run Control Files], page 190 section in

this chapter. See [Repository Administration]|, page 63 for details on setting up a password-
authenticating CVS server.)

Options: None.

CVS Reference 175

rdiff

Synopsis: rdiff OPTIONS] PROJECTS
Alternate names — patch, pa
Requires — Repository
Changes — Nothing

Like the diff command, except it operates directly in the repository and, therefore,
requires no working copy. This command is meant for obtaining the differences between
one release and another of your project, in a format suitable as input to the patch program
(perhaps so you can distribute patch files to users who want to upgrade).

The operation of the patch program is beyond the scope of this book. However, note
that if the patch file contains diffs for files in subdirectories, you may need to use the -p
option to patch to get it to apply the differences correctly. (See the patch documentation
for more about this.) (See also [diff], page 163.)

Options:
-c — Prints output in context diff format (the default).
-D DATE or -D DATEL1 -D DATE2 — With one date, this shows the differences between
the files as of DATE and the head revisions. With two dates, it shows the differences
between the dates.

-f — Forces the use of head revision if no matching revision is found for the -D or -r flag
(otherwise, rdiff would just ignore the file).

-1 — Local. Won’t descend into subdirectories.

-R — Recursive. Descends into subdirectories (the default). You only specify this option
to counteract a -1 in your .cvsrc.

-r REV -r REV1 -r REV2 - With one revision, this shows the differences between
revision REV of the files and the head revisions. With two, it shows the differences
between the revisions.

-s — Displays a summary of differences. This shows which files have been added, mod-
ified, or removed, without showing changes in their content. The output looks like
this:

floss$ cvs -Q rdiff -s -D 1999-08-20 myproj

File myproj/Random.txt is new; current revision 1.4

File myproj/README.txt changed from revision 2.1 to 2.20

File myproj/baar is new; current revision 2.3

-t — Shows the diff between the top two revisions of each file. This is a handy shortcut
for determining the most recent changes to a project. This option is incompatible with
-D and -r.

-u — Prints output in unidiff format. Older versions of patch can’t handle unidiff format;
therefore, don’t use -u if you're trying to generate a distributable patch file — use -c
instead.

-V (Obsolete) — CVS reports an error if you try to use this option now. I've included
it here only in case you see some old script trying to use it.

176 Open Source Development With CVS

release

Synopsis: release [OPTIONS] DIRECTORY
Alternate names — re, rel
Requires — Working copy
Changes — Working copy, CVSROOT /history

Cancels a checkout (indicates that a working copy is no longer in use). Unlike most
CVS commands that operate on a working copy, this one is not invoked from within the
working copy but from directly above it (in its parent directory). You either have to set
your CVSROQT environment variable or use the -d global option, as CVS will not be able
to find out the repository from the working copy.

Using release is never necessary. Because CVS doesn’t normally do locking, you can just
remove your working copy.

However, if you have uncommitted changes in your working copy or you want your
cessation of work to be noted in the CVSROOT /history file (see the history command),
you should use release. CVS first checks for any uncommitted changes; if there are any, it
warns you and prompts for continuation. Once the working copy is actually released, that
fact is recorded in the repository’s CVSROOT /history file.

Options:

-d — Deletes the working copy if the release succeeds. Without -d, the working copy
remains on disk after the release.

If you created any new directories inside your working copy but did not add them to the
repository, they are deleted along with the rest of the working copy, if you specified the -d
flag.

remove

Synopsis: remove [OPTIONS] [FILES]
Alternate names — rm, delete
Requires — Working copy
Changes — Working copy

Removes a file from a project. Normally, the file itself is removed from disk when you
invoke this command (but see -f). Although this command operates recursively by default,
it is common to explicitly name the files being removed. Note the odd implication of the
previous sentence: Usually, you run cvs remove on files that don’t exist anymore in your
working copy.

Although the repository is contacted for confirmation, the file is not actually removed
until a subsequent commit is performed. Even then, the RCS file is not really removed from
the repository; if it is removed from the trunk, it is just moved into an Attic/ subdirectory,
where it is still available to exist on branches. If it is removed from a branch, its location
is not changed, but a new revision with state dead is added on the branch. (See also [add],
page 157.)

Options:

CVS Reference 177

-f — Force. Deletes the file from disk before removing it from CVS. This meaning differs
from the usual meaning of -f in CVS commands: "Force to head revision".

-1 — Local. Runs only in current working directory.

-R — Recursive. Descends into subdirectories (the default). This option exists only to
counteract a -l in .cvsrc.

rtag

Synopsis: rtag [OPTIONS] TAG PROJECT(S)
Alternate names — rt, rfreeze
Requires — Repository
Changes — Repository
Tags a module directly in the repository (requires no working copy). You probably need

to have your CVSROOQOT environment variable set or use the -d global option for this to
work. (See also [tag], page 178.)

Options:

-a — Clears the tag from any removed files, because removed files stay in the reposi-
tory for historical purposes but are not considered part of the live project anymore.
Although it’s illegal to tag files with a tag name that’s already in use, there should be
no interference if the name is only used in removed files (which, from the current point
of view of the project, don’t exist anymore).

-b — Creates a new branch, with branch name TAG.
-D DATE — Tags the latest revisions no later than DATE.

-d — Deletes the tag. No record is made of this change — the tag simply disappears.
CVS does not keep a change history for tags.

-F — Forces reassignment of the tag name, if it happens to exist already for some other
revision in the file.

-f — Forces to head revision if a given tag or date is not found. (See -r and -D.)
-1 — Local. Runs in the current directory only.

-n — Won'’t execute a tag program from CVSROOT /modules. (See the section [Repos-
itory Administrative Files], page 184 later in this chapter for details about such pro-
grams.)

-R — Recursive. Descends into subdirectories (the default). The -R option exists only
to counteract a -1 in .cvsrc.

-r REV - Tags revision REV (which may itself be a tag name).

server

Synopsis: server

Starts up a CVS server. This command is never invoked by users (unless they’re trying
to debug the client/server protocol), so forget I even mentioned it.

Options: None.

178 Open Source Development With CVS

status

Synopsis: status [OPTIONS] [FILES]
Alternate names — st, stat
Requires — Working copy
Changes — Nothing
Shows the status of files in the working copy.
Options:
-1 — Local. Runs in the current directory only.

-R — Recursive. Descends into subdirectories (the default). The -R option exists only
to counteract a -1 in .cvsrc.

-v — Shows tag information for the file.

tag

Synopsis: tag [OPTIONS] TAG [FILES]
Alternate names — ta, freeze
Requires — Working copy, repository
Changes — Repository
Attaches a name to a particular revision or collection of revisions for a project. Often

called "taking a snapshot" of the project. This command is also used to create branches in
CVS. (See the -b option — see also [rtag|, page 177.)

Options:
-b — Creates a branch named TAG.

-¢ — Checks that the working copy has no uncommitted changes. If it does, the com-
mand exits with a warning, and no tag is made.

-D DATE - Tags the latest revisions no later than DATE.

-d — Deletes the tag. No record is made of this change; the tag simply disappears. CVS
does not keep a change history for tags.

-F — Forces reassignment of the tag name, if it happens to exist already for some other
revision in the file.

-f — Forces to head revision if a given tag or date is not found. (See -r and -D.)
-1 — Local. Runs in the current directory only.

-R — Recursive. Descends into subdirectories (the default). The -R option exists only
to counteract a -l in .cvsrc.

-r REV — Tags revision REV (which may itself be a tag name).

unedit

Synopsis: unedit [OPTIONS] [FILES]
Alternate names — None

Requires — Working copy, repository

CVS Reference 179

Changes — edit/watch lists in the repository

Signals to watchers that you are done editing a file. (See also [watch], page 181, [watch-
ers|, page 181, [edit], page 165, and [editors], page 166.)
Options:
-1 — Local. Signals editing for files in the current working directory only.

-R — Recursive (opposite of -1). Recursive is the default; the only reason to pass -R is
to counteract a -1 in your .cvsrc file.

update

Synopsis: update [OPTIONS] [FILES]
Alternate names — up, upd
Requires — Working copy, repository
Changes — Working copy

Merges changes from the repository into your working copy. As a side effect, it indicates
which files in your working copy are modified (but if the -Q global option is passed, these
indications won’t be printed). (See also [checkout], page 161.)

Options:

-A — Clears any sticky tags, sticky dates, or sticky RCS keyword expansion modes. This
may result in the contents of files changing, if the trunk-head revisions are different
from the former sticky revisions. (Think of -A as being like a fresh checkout of the
project trunk.)

-C — Clean out any locally changed files and replace them with the latest versions
from the repository. This is not necessarily the same as reverting the files, since the
repository may have changed since the last update or checkout. Any local modifications
are saved in ‘.#file.rev’.

Note: this option was implemented in January 2000; if your CVS was acquired before
then, you’d have to upgrade.

-D DATE — Updates to the most recent revisions no later than DATE. This option is
sticky and implies -P. If the working copy has a sticky date, commits are not possible.

-d — Retrieves absent directories — that is, directories that exist in the repository but
not yet in the working copy. Such directories may have been created in the repository
after the working copy was checked out. Without this option, update only operates
on the directories present in the working copy; new files are brought down from the
repository, but new directories are not. (See also -P.)

-f — Forces to head revision if no matching revision is found with the -D or -r flags.
-I NAME — Like the -I option of import.

-j REV[:DATE] or -j REV1[:DATE] -j REV2[:DATE] - Joins, or merges, two lines of
development. Ignoring the optional DATE arguments for the moment (we’ll get to them
later), here’s how -j works: If only one -j is given, it takes all changes from the common
ancestor to REV and merges them into the working copy. The common ancestor is the
latest revision that is ancestral to both the revisions in the working directory and to

180 Open Source Development With CVS

REV. If two -j options are given, it merges the changes from REV1 to REV2 into the
working copy.

The special tags HEAD and BASE may be used as arguments to -j; they mean the
most recent revision in the repository, and the revision on which the current working
copy file is based, respectively.

As for the optional DATE arguments, if REV is a branch, it is normally taken to mean
the latest revision on that branch, but you can restrict it to the latest revision no later
than DATE. The date should be separated from the revision by a colon, with no spaces,
for instance:

floss$ cvs update -j ABranch:1999-07-01 -j ABranch:1999-08-01

In this example, different dates on the same branch are used, so the effect is to take
the changes on that branch from July to August and merge them into the working
copy. However, note that there is no requirement that the branch be the same in both
-j options.

-k MODE - Does RCS keyword substitution according to MODE. (See the section
[Keyword Substitution (RCS Keywords)], page 182 later in this chapter.) The mode
remains sticky on the working copy, so it will affect future updates (but see -A).

-1 — Local. Updates the current directory only.

-P — Prunes empty directories. Any CVS-controlled directory that contains no files at
the end of the update are removed from the working copy. (See also -d.)

-p — Sends file contents to standard output instead of to the files. Used mainly for
reverting to a previous revision without producing sticky tags in the working copy. For
example:

floss$ cvs update -p -r 1.3 README.txt > README.txt

Now README.txt in the working copy has the contents of its past Revision 1.3, just
as if you had hand-edited it into that state.

-R - Recursive. Descends into subdirectories to update (the default). The only reason
you’d specify it is to counteract a -1 in .cvsrc.

-r REV — Updates (or downdates, or crossdates) to revision REV. When updating a
whole working copy, REV is most often a tag (regular or branch). However, when
updating an individual file, it is just as likely to be a revision number as a tag.

This option is sticky. If the files are switched to a nonbranch tag or sticky revision,
they cannot be committed until the stickiness is removed. (See -A.) If REV was a
branch tag, however, commits are possible. They’ll simply commit new revisions on
that branch.

-WSPEC — Specifies wrapper-style filters to use during the update. You can use this
option multiple times. (See [cvswrappers|, page 186 in [Repository Administrative
Files], page 184 in this chapter for details about wrapper specs.) There is no space
between -W and its argument.

watch

Synopsis: watch on|off|add|remove [OPTIONS] [FILES]

Alternate names — None

CVS Reference 181

Requires — Working copy, repository
Changes — Watch list in repository
Sets a watch on one or more files. Unlike most CVS commands, watch requires a further

subcommand to do something useful. (See also [watchers], page 181, [edit], page 165,
[editors], page 166, and [unedit], page 179, and [users], page 190.)

Subcommands:

on — Declares that the files are being watched. This means that they are created read-
only on checkout, and users should do cvs edit to make them read-write (and notify
any watchers that the file is now being edited). Turning on a watch does not add you
to the watch list for any files. (See watch add and watch remove for that.)

off — Opposite of watch on. Declares that the files are no longer being watched.

add — Adds you to the list of watchers for this file. You are notified when someone
commits or runs cvs edit or cvs unedit (but see the -a option).

remove — Opposite of watch add. Removes you from the list of watchers for this file.
Options (for use with any watch subcommand). All three options have the same mean-
ings as for edit:
-a ACTIONS
-1
-R

watchers

Synopsis: watchers [OPTIONS] [FILES]
Alternate names — None
Requires — Working copy, repository
Changes — Nothing
Shows who’s watching what files.
Options — these options mean the same thing here as for [edit], page 165:
-1
-R

Keyword Substitution (RCS Keywords)

CVS can perform certain textual substitutions in files, allowing you to keep some kinds
of information automatically up to date in your files. All of the substitutions are triggered
by a certain keyword pattern, surrounded by dollar signs. For example,

$Revision$
in a file expands to something like
$Revision: 1.5 §

and CVS continues to keep the revision string up to date as new revisions are committed.

182 Open Source Development With CVS

Controlling Keyword Expansion

By default, CVS performs keyword expansion unless you tell it to stop. You can per-
manently suppress keyword expansion for a file with the -k option when you add the file
to the project, or you can turn it off later by invoking admin with -k. The -k option offers
several different modes of keyword control; usually you want mode o or b, for example:

floss$ cvs add -ko chapter-9.sgml

This command added ‘chapter-9.sgml’ to the project with keyword expansion turned
off. It sets the file’s default keyword expansion mode to o, which means no substitution.
(Actually, the "o" stands for "old", meaning to substitute the string with its old value,
which is the same as substituting it for itself, resulting in no change. I'm sure this logic
made sense to somebody at the time.)

Each file’s default keyword mode is stored in the repository. However, each working
copy can also have its own local keyword substitution mode — accomplished with the -k
options to checkout or update. You can also have a mode in effect for the duration of just
one command, with the -k option to diff.

Here are all the possible modes, presented with the -k option prepended (as one would
type at a command line). Any of these options can be used as either the default or local
keyword substitution mode for a file:

-kkv — Expands to keyword and value. This is the default keyword expansion mode,
so you don’t need to set it for new files. You might use it to change a file from another
keyword mode, however.

-kkvl — Like -kkv, but includes the locker’s name if the revision is currently locked.
(See the -1 option to admin for more on this.)

-kk — Won’t expand values in keyword strings, just uses the keyword name. For exam-
ple, with this option,

$Revision: 1.5 §

and
$Revision$

would both "expand" (okay, contract) to:
$Revision$

-ko — Reuses the keyword string found in the file (hence "o" for "old"), as it was in the
working file just before the commit.

-kb — Like -ko, but also suppresses interplatform line-end conversions. The "b" stands
for "binary"; it is the mode you should use for binary files.

-kv — Substitutes the keyword with its value, for example
$Revision$

might become:
1.5

Of course, after that’s happened once, future substitutions will not take place, so this
option should be used with care.

CVS Reference 183

List Of Keywords

These are all the dollar-sign-delimited keywords that CVS recognizes. Following is a list
of the keyword, a brief description, and an example of its expanded form:
$Author$ — Author of the change:
$Author: jrandom $
$Date$ — The date and time of the change, in UTC (GMT):
$Date: 1999/08/23 18:21:13 §
$Header$ — Various pieces of information thought to be useful: full path to the RCS

file in the repository, revision, date (in UTC), author, state, and locker. (Lockers are
rare; although in the following example, gsmith has a lock.):

$Header: /usr/local/newrepos/myproj/hello.c,v 1.1 1999/06/01 \
03:21:13 jrandom Exp gsmith $

Id — Like $Header$, but without the full path to the RCS file:

$Id: hello.c,v 1.1 1999/06/01 03:21:13 jrandom Exp gsmith $
Log — The log message of this revision, along with the revision number, date, and
author. Unlike other keywords, the previous expansions are not replaced. Instead, they

are pushed down, so that the newest expansion appears at the top of an ever-growing
stack of Log messages:

$Log: hello.c,v $ Revision 1.12 1999/07/19 06:12:43 jrandom
say hello in Aramaic

Any text preceding the Log keyword on the same line will be prepended to the
downward expansions too; this is so that if you use it in a comment in a program
source file, all of the expansion is commented, too.

$Locker$ — Name of the person who has a lock on this revision (usually no one):
$Locker: gsmith $

$Name$ — Name of the sticky tag:
$Name: release_1_14 §

$RCSfile$ — Name of the RCS file in the repository:
$RCSfile: hello.c,v $

$Revision$ — Revision number:
$Revision: 1.1 §

$Source$ — Full path to the RCS file in the repository:
$Source: /usr/local/newrepos/myproj/hello.c,v $

$State$ — State of this revision:
$State: Exp $

Repository Administrative Files

The repository’s administrative files are stored in the CVSROOT subdirectory of the
repository. These files control various aspects of CVS’s behavior (in that repository only,
of course).

You may also want to refer to the discussion of administrative files in [Repository Ad-
ministration], page 63, which includes examples.

184 Open Source Development With CVS

Storage And Editing

Generally, the administrative files are kept under revision control just like any other file in
the repository (the exceptions are noted). However, unlike other files, checked-out copies of
the administrative files are stored in the repository, right next to their corresponding RCS
files in the ‘CVSROOT’ subdirectory. It is these checked-out copies which actually govern
CVS’s behavior.

The normal way to modify the administrative files is to check out a working copy of the
CVSROOT module, make your changes, and commit. CVS updates the checked-out copies
in the repository automatically. (See [checkoutlist], page 185.) In an emergency, however,
it is also possible to edit the checked-out copies in the repository directly.

Shared Syntax

In all of the administrative files, a # at the beginning of a line signifies a comment; that
line is ignored by CVS. A backslash preceding a newline quotes the newline out of existence.

Some of the files (commitinfo, loginfo, taginfo, and rcsinfo) share more syntactic conven-
tions as well. In these files, on the left of each line is a regular expression (which is matched
against a file or directory name), and the rest of the line is a program, possibly with argu-
ments, which is invoked if something is done to a file matching the regular expression. The
program is run with its working directory set to the top of the repository.

In these files, there are two special regular expressions that may be used: ALL and
DEFAULT. ALL matches any file or directory, whether or not there is some other match
for it, and DEFAULT matches only if nothing else matched.

Shared Variables

The info files also allow certain variables to be expanded at runtime. To expand a
variable, precede it with a dollar sign (and put it in curly braces just to be safe). Here are
the variables CVS knows about:

${CVSROQOT?} - The top of the repository.

${RCSBIN} — (Obsolete) Don’t use this variable. It is only applicable in CVS Version
1.9.18 and older. Specifying it now may result in an error.

${CVSEDITOR} ${VISUAL} ${EDITOR} — These all expand to the editor that CVS
is using for a log message.

${USER} — The user running CVS (on the server side).

User Variables

Users can also set their own variables when they run any CVS command. (See the -s
global option.) These variables can be accessed in the ‘*info’ files by preceding them with
an equal sign, as in ${=VAR}.

checkoutlist

This contains a list of files for which checked-out copies should be kept in the repository.
Each line gives the file name and an error message for CVS to print if, for some reason, the
file cannot be checked out in the repository:

CVS Reference 185

FILENAME ERROR_MESSAGE

Because CVS already knows to keep checked-out copies of the existing administrative
files, they do not need to be listed in checkoutlist. Specifically, the following files never need
entries in checkoutlist: loginfo, rcsinfo, editinfo, verifymsg, commitinfo, taginfo, ignore,
checkoutlist, cvswrappers, notify, modules, readers, writers, and config.

commitinfo

Specifies programs to run at commit time, based on what’s being committed. Each line
consists of a regular expression followed by a command template:

REGULAR_EXPRESSION PROGRAM [ARGUMENTS]

The PROGRAM is passed additional arguments following any arguments you may have
written into the template. These additional arguments are the full path to the repository,
followed by the name of each file about to be committed. These files can be examined
by PROGRAM; their contents are the same as those of the working copy files about to
be committed. If PROGRAM exits with nonzero status, the commit fails; otherwise, it
succeeds. (See also [Shared Syntax]|, page 184 earlier in this chapter.)

config

Controls various global (non-project-specific) repository parameters. The syntax of each
line is
ParameterName=yes|no
except for the LockDir parameter, which takes an absolute pathname as argument.

The following parameters are supported:

RCSBIN (default: =no) — (Obsolete) This option is silently accepted for backwards
compatibility, but no longer has any effect.

SystemAuth (default: =no) — If yes, CVS pserver authentication tries the system user
database — usually ‘/etc/passwd’ — if a username is not found in ‘CVSRO0T/passwd’. If
no, the user must exist in ‘CVSRO0T/passwd’ to gain access via the :pserver: method.

PreservePermissions (default: =no) — If yes, CVS tries to preserve permissions and
other special file system information (such as device numbers and symbolic link targets)
for files. You probably don’t want to do this, as it does not necessarily behave as
expected. (See the node Special Files in the Cederqvist manual for details.)

TopLevelAdmin (default: =no) — If yes, checkouts create a ‘CVS/’ subdirectory next
to each working copy tree (in the parent directory of the working copy). This can be
useful if you will be checking out many working copies from the same repository; on
the other hand, setting it here affects everyone who uses this repository.

LockDir (unset by default) — The argument after the equal sign is a path to a directory
in which CVS can create lockfiles. If not set, lockfiles are created in the repository,
in locations corresponding to each project’s RCS files. This means that users of those
projects must have file-system-level write access to those repository directories.

186 Open Source Development With CVS

cvsignore

Ignores certain files when doing updates, imports, or releases. By default, CVS already
ignores some kinds of files. (For a full list, see the -I option to import, earlier in this
chapter.) You can add to this list by putting additional file names or wildcard patterns in
the cvsignore file. Each line gives a file name or pattern, for example:

README .msdos
* . html
blah?.out

This causes CVS to ignore any file named ‘README.msdos’, any file ending in ‘.html’,
and any file beginning with ‘blah’ and ending with ‘.out’. (Technically, you can name
multiple files or patterns on each line, separated by whitespace, but it is more readable to
keep them to one per line. The whitespace separation rule does, unfortunately, mean that
there’s no way to specify a space in a file name, except to use wildcards.)

A ' anywhere in the list cancels all previous entries. (See [SCVSIGNORE]|, page 194
in the section [Environment Variables], page 194 in this chapter for a fuller discussion of
ignore processing.)

cvswrappers

Specifies certain filtering behaviors based on file name. Each line has a file-globbing
pattern (that is, a file name or file wildcards), followed by an option indicating the filter
type and an argument for the option.

Options:

-m — Specifies an update method. Possible arguments are MERGE, which means to
merge changes into working files automatically, and COPY, which means don’t try to
automerge but present the user with both versions of the file and let them work it out.
MERGE is the default, except for binary files (those whose keyword substitution mode
is -kb). (See the [Keyword Substitution (RCS Keywords)], page 182 section in this
chapter.) Files marked as binary automatically use the COPY method, so there is no
need to make a -m COPY wrapper for them.

-k — Specifies a keyword substitution mode. All of the usual modes are possible. (See
the [Keyword Substitution (RCS Keywords)], page 182 section in this chapter for a
complete list.)

Here is an example cvswrappers file:

*.blob -m COPY
*.blink -k o

This cvswrappers file says to not attempt merges on files ending in ‘. blob’ and suppress
keyword substitution for files ending in ‘.blink’. (See also the file ‘. cvswrappers’ in the
[Working Copy Files|, page 191 section in this chapter.)

editinfo

This file is obsolete. Very.

CVS Reference 187

history file

Stores an ever-accumulating history of activity in the repository, for use by the cvs
history command. To disable this feature, simply remove the history file. If you don’t
remove the file, you should probably make it world-writeable to avoid permission problems
later.

The contents of this file do not modify CVS’s behavior in any way (except for the output
of cvs history, of course).

loginfo

Specifies programs to run on the log message for each commit, based on what’s being

committed. Each line consists of a regular expression followed by a command template:
REGULAR_EXPRESSION PROGRAM [ARGUMENTS]

The PROGRAM is passed the log message on its standard input.

Several special codes are available for use in the arguments: %s expands to the names
of the files being committed, %V expands to the old revisions from before the commit, and
%v expands to the new revisions after the commit. When there are multiple files involved,
each element of the expansion is separated from the others by whitespace. For example,
in a commit involving two files, %s might expand into hello.c README.txt, and %v into
1.17 1.12.

You may combine codes inside curly braces, in which case, each unit of expansion is in-
ternally separated by commas and externally separated from the other units by whitespace.
Continuing the previous example, %{sv} expands into hello.c,1.17 README. txt,1.12.

If any % expansion is done at all, the expansion is prefixed by the path to the project
subdirectory (relative to the top of the repository). So that last expansion would actually
be:

myproj hello.c,1.17 README.txt,1.12

If PROGRAM exits with nonzero status, the commit fails; otherwise, it succeeds. (See

also the [Shared Syntax]|, page 184 section in this chapter.)

modules

This maps names to repository directories. The general syntax of each line is:
MODULE [OPTIONS] [&0THERMODULE...] [DIR] [FILES]

DIR need not be a top-level project directory — it could be a subdirectory. If any FILES
are specified, the module consists of only those files from the directory.

An ampersand followed by a module name means to include the expansion of that
module’s line in place.

Options:
-a — This is an alias module, meaning it expands literally to everything after the
OPTIONS. In this case, the usual DIR/FILES behavior is turned off, and everything
after the OPTIONS is treated as other modules or repository directories.
If you use the -a option, you may exclude certain directories from other modules by
putting them after an exclamation point (!). For example

188 Open Source Development With CVS

top_proj -a !myproj/a-subdir !myproj/b-subdir myproj
means that checking out top_proj will get all of myproj except a-subdir and b-
subdir.
-d NAME — Names the working directory NAME instead of the module name.
-¢ PROGRAM - Runs PROGRAM whenever files in this module are exported.
-i PROGRAM - Runs PROGRAM whenever files in this module are committed. The
program is given a single argument — the full pathname in the repository of the file in
question. (See [commitinfo]|, page 185, [loginfo|, page 187, and [verifymsg], page 190
for more sophisticated ways to run commit-triggered programs.)
-0 PROGRAM — Runs PROGRAM whenever files in this module are checked out. The
program is given a single argument, the name of the module.
-s STATUS — Declares a status for the module. When the modules file is printed (with
cvs checkout -s), the modules are sorted by module status and then by name. This
option has no other effects in CVS, so go wild. You can use it to sort anything — status,
person responsible for the module, or the module’s file language, for example.
-t PROGRAM - Runs PROGRAM whenever files in this module are tagged with cvs
rtag. The program is passed two arguments: the name of the module and the tag name.
The program is not used for tag, only for rtag. I have no idea why this distinction is
made. You may find the taginfo file more useful if you want to run programs at tag
time.
-u PROGRAM — Runs PROGRAM whenever a working copy of the module is updated
from its top-level directory. The program is given a single argument, the full path to
the module’s repository.

notify

Controls how the notifications for watched files are performed. (You may want to read
up on the watch and edit commands, or see the section [Watches (CVS As Telephone)],
page 95 in [Advanced CVS], page 95.) Each line is of the usual form:

REGULAR_EXPRESSION PROGRAM [ARGUMENTS]

A %s in ARGUMENTS is expanded to the name of the user to be notified, and the rest
of the information regarding the notification is passed to PROGRAM on standard input
(usually this information is a brief message suitable for emailing to the user). (See the
section [Shared Syntax], page 184 earlier in this chapter.)

As shipped with CVS, the notify file has one line
ALL mail %s -s "CVS notification"

which is often all you need.

passwd

Provides authentication information for the pserver access method. Each line is of the
form:

USER:ENCRYPTED_PASSWORD[:SYSTEM _USER|]
If no SYSTEM_USER is given, USER is taken as the system username.

CVS Reference 189

rcsinfo

Specifies a form that should be filled out for log messages that are written with an
interactive editor. Each line of rcsinfo looks like:

REGULAR_EXPRESSION FILE_CONTAINING_TEMPLATE

This template is brought to remote working copies at checkout time, so if the template
file or rcsinfo file changes after checkout, the remote copies won’t know about it and will
continue to use the old template. (See also the section [Shared Syntax|, page 184 in this
chapter.)

taginfo
Runs a program at tag time (usually done to check that the tag name matches some
pattern). Each line is of the form:

REGULAR_EXPRESSION PROGRAM

The program is handed a set group of arguments. In order, they are the tag name, the
operation (see below), the repository, and then as many file name/revision-number pairs as
there are files involved in the tag. The file/revision pairs are separated by whitespace, like
the rest of the arguments.

The operation is one of add, mov, or del (mov means the -F option to tag was used).

If PROGRAM exits with nonzero status, the tag operation will not succeed. (See also
the section [Shared Syntax|, page 184 in this chapter.)

users

Maps usernames to email addresses. Each line looks like:
USERNAME:EMAIL_ADDRESS

This sends watch notifications to EMAIL_ADDRESS instead of to USERNAME at the
repository machine. (All this really does is control the expansion of %s in the notify file.)
If EMAIL_ADDRESS includes whitespace, make sure to surround it with quotes.

If user aliasing is being used in the passwd file, the username that will be matched is
the CVS username (the one on the left), not the system username (the one on the right, if

any).
val-tags

Caches valid tag names for speedier lookups. You should never need to edit this file, but
you may need to change its permissions, or even ownership, if people are having trouble
retrieving or creating tags.

verifymsg

Used in conjunction with rcsinfo to verify the format of log messages. Each line is of the
form:

REGULAR_EXPRESSION PROGRAM [ARGUMENTS]

190 Open Source Development With CVS

The full path to the current log message template (see [rcsinfo|, page 189 earlier in this
chapter) is appended after the last argument written in the verifymsg file. If PROGRAM
exits with nonzero status, the commit fails.

Run Control Files

There are a few files on the client (working copy) side that affect CVS’s behavior. In
some cases, they are analogs of repository administrative files; in other cases, they control
behaviors that are only appropriate for the client side.

¢.cvsrc’

Specifies options that you want to be used automatically with every CVS command.
The format of each line is

COMMAND OPTIONS

where each COMMAND is an unabbreviated CVS command, such as checkout or update
(but not co or up). The OPTIONS are those that you want to always be in effect when you
run that command. Here is a common ‘. cvsrc’ line:
update -d -P
To specify global options, simple use cvs as the COMMAND.

‘.cvsignore’

Specifies additional ignore patterns. (See [cvsignore], page 186 in the [Repository Ad-
ministrative Files], page 184 section in this chapter for the syntax.)

You can have a .cvsignore file in your home directory, which will apply every time you
use CVS. You can also have directory-specific ones in each project directory of a working
copy (these last only apply to the directory where the .cvsignore is located, and not to its
subdirectories).

(See [SCVSIGNORE], page 194 in the section [Environment Variables], page 194 in this
chapter, for a fuller discussion of ignore processing.)

‘.cvspass’

Stores passwords for each repository accessed via the pserver method. Each line is of
the form:

REPOSITORY LIGHTLY_SCRAMBLED_PASSWORD

The password is essentially stored in cleartext — a very mild scrambling is done to
prevent accidental compromises (such as the root user unintentionally looking inside the
file). However, this scrambling will not deter any serious-minded person from gaining the
password if they get access to the file.

The .cvspass file is portable. You can copy it from one machine to another and have all
of your passwords at the new machine, without ever having run cvs login there. (See also
the [login], page 174 and [logout], page 174 commands.)

CVS Reference 191

‘.cvswrappers’

This is a client side version of the cvswrappers file. (See the [Repository Administrative
Files], page 184 section in this chapter.) There can be a ‘.cvswrappers’ file in your home
directory and in each directory of a working copy directory, just as with ‘. cvsignore’.

Working Copy Files

The CVS/ administrative subdirectories in each working copy contain some subset of
the following files.

e CVS/Base/

e CVS/Baserev

e CVS/Baserev.tmp
e CVS/Checkin.prog
e CVS/Entries

e CVS/Entries.Backup
e CVS/Entries.Log
e CVS/Entries.Static
e CVS/Notify

e CVS/Notify.tmp

¢ CVS/Repository

e CVS/Root

e CVS/Tag

e CVS/Template

e CVS/Update.prog

Here is what each file or directory does:
‘CVS/Base/’ (directory)

If watches are on, cvs edit stores the original copy of the file in this directory. That
way, cvs unedit can work even if it can’t reach the server.

‘CVS/Baserev’

Lists the revision for each file in ‘Base/’. Each line looks like this:
FILE/REVISION/EXPANSION
EXPANSION is currently ignored to allow for, well, future expansion.

‘CVS/Baserev.tmp’

This is the temp file for the preceding. (See ‘CVS/Notify.tmp’ or ‘CVS/Entries.Backup’
later on for further explanation.)

192 Open Source Development With CVS

‘CVS/Checkin.prog’

Records the name of the program specified by the -i option in the modules file. (See the
[Repository Administrative Files], page 184 section in this chapter.)

‘CVS/Entries’

Stores the revisions for the files in this directory. Each line is of the form:
[CODE_LETTER] /FILE/REVISION/DATE/ [KEYWORD_MODE]/ [STICKY_OPTION]

If CODE_LETTER is present, it must be D for directory (anything else is silently ignored
by CVS, to allow for future expansion), and the rest of the items on the line are absent.

This file is always present.

‘CVS/Entries.Backup’

This is just a temp file. If you’re writing some program to modify the ‘Entries’ file, have
it write the new contents to ‘Entries.backup’ and then atomically rename it to ‘Entries’.

‘CVS/Entries.Log’

This is basically a patch file to be applied to ‘Entries’ after ‘Entries’ has been read
(this is an efficiency hack, to avoid having to rewrite all of ‘Entries’ for every little change).
The format is the same as ‘Entries’, except that there is an additional mandatory code
letter at the front of every line: An A means this line is to be added to what’s in ‘Entries’;
R means it’s to be removed from what’s in ‘Entries’. Any other letters should be silently
ignored, to allow for future expansion.

‘CVS/Entries.Static’

If this file exists, it means only part of the directory was fetched from the repository,
and CVS will not create additional files in that directory. This condition can usually be
cleared by using update -d.

‘CVS/Notify’

Stores notifications that have not yet been sent to the server.

‘CVS/Notify.tmp’

Temp file for ‘Notify’. The usual procedure for modifying ‘Notify’ is to write out
‘Notify.tmp’ and then rename it to ‘Notify’.

‘CVS/Repository’

The path to the project-specific subdirectory in the repository. This may be an absolute
path, or it may be relative to the path given in Root.

This file is always present.

CVS Reference 193

‘CVS/Root’

This is the repository; that is, the value of the $CVSROOT environment variable or the
argument to the -d global option.

This file is always present.

‘CVs/Tag’

If there is a sticky tag or date on this directory, it is recorded in the first line of the file.
The first character is a single letter indicating the type of tag: T, N, or D, for branch tag,
nonbranch tag, or date respectively. The rest of the line is the tag or date itself.

‘CVS/Template’

Contains a log message template as specified by the rcsinfo file. (See [Repository Ad-
ministrative Files|, page 184 earlier in this chapter.) It is relevant only for remote working
copies; working copies on the same machine as the repository just read rcsinfo directly.

‘CVS/Update.prog’

Records the name of the program specified by the -u option in the modules file. (See
the [Repository Administrative Files], page 184 section in this chapter.)

Environment Variables

These are all the environment variables that affect CVS.

$COMSPEC

This is used in OS/2 only; it specifies the name of the command interpreter. It defaults
to CMD .EXE.

$CVS_CLIENT_LOG

Used for debugging the client /server protocol. Set this variable to a file name before you
start using CVS; all traffic to the server will be logged in filename.in, and everything from
the server will be logged in filename.out.

$CVS_CLIENT_PORT

Used in Kerberos-authenticated client/server access.

$CVSEDITOR

Specifies the program to use to edit log messages for commits. This overrides $EDITOR
and $VISUAL.

194 Open Source Development With CVS

$CVSIGNORE

A whitespace-separated list of file names and wildcard patterns that CVS should ignore.
(See also the -I option to the [import], page 169 command.)

This variable is appended last to the ignore list during a command. The list is built
up in this order: ‘CVSROOT/cvsignore’, the ‘.cvsignore’ file in your home directory, the
$CVSIGNORE variable, any -I command option, and finally the contents of ‘.cvsignore’ files
in the working copy used as CVS works in each directory. A ! as the ignore specification
at any point nullifies the entire ignore list built up to that point.

$CVS_IGNORE_REMOTE_ROOT

Recently obsolete.

$CVS_PASSFILE

Tells CVS to use some file other than .cvspass in your home directory. (See the file
‘.cvspass’ in the [Run Control Files], page 190 section in this chapter.)

$CVS_RCMD_PORT

Specifies the port number to contact the remd daemon on the server side. (This variable
is currently ignored in Unix CVS clients.)

$CVSREAD

Makes working copy files read-only on checkout and update, if possible (the default is
for them to be read-write). (See also the -r global option.)

$CVSROOT

This specifies the path to the repository. This is overridden with the -d global option
and by the ambient repository for a given working copy. The path to the repository may
be preceded by an access method, username, and host, according to the following syntax:

[[:METHOD:] [[USER@]HOST] :1/REPOSITORY_PATH

See the -d global option, in the section [Global Options|, page 152 near the beginning of
this chapter, for a list of valid methods.

$CVS_RSH

Specifies an external program for connecting to the server when using the :ext: access
method. Defaults to rsh, but ssh is a common replacement value.

$CVS_SERVER

Program to invoke for CVS on the server side. Defaults to cvs, of course.

CVS Reference 195

$CVS_SERVER_SLEEP

Delays the start of the server child process by the specified number of seconds. This is
used only for debugging, to allow time for a debugger to connect.

$CVSUMASK

Permissions for files and directories in the repository. (You probably don’t want to set
this; it doesn’t work for client/server anyway.)

$CVSWRAPPERS

A whitespace-separated list of file names, wildcards, and arguments that CVS should
use as wrappers. (See [cvswrappers|, page 186 in the [Repository Administrative Files],
page 184 section in this chapter for more information.)

$EDITOR

(See [SCVSEDITOR], page 194.)

$HOME %HOMEDRIVE% %HOMEPATH%

Where the ‘. cvsrc’, ‘. cvspass’, and other such files are found (under Unix, only $HOME
is used). In Windows NT, %HOMEDRIVEY and %HOMEPATHY, might be set for you; in Windows
95, you may need to set them for yourself.

In Windows 95, you may also need to set 4HOMEY. Make sure not to give it a trailing
backslash; use set HOME=C: or something similar.

$PATH

Obsolete.

$TEMP $TMP $TMPDIR

Where temporary files go (the server uses TMPDIR; Windows NT uses TMP). Set-
ting this on the client side will not affect the server. Setting this on either side will not
affect where CVS stores temporary lock files. (See [config], page 185 in the [Repository
Administrative Files|, page 184 section in this chapter for more information.)

$VISUAL
(See [SCVSEDITOR/, page 194.)

196 Open Source Development With CVS

Third-Party Tools 197

Third-Party Tools

Many people have written programs to augment CVS. I call these third-party tools
because they have their own maintainers, separate from the CVS development team. Most
of these programs are not distributed with CVS, although some are. This chapter covers
third-party tools that I have found useful, but that are not distributed with CVS.

Although there are some very popular and widely used non-command-line or non-Unix
interfaces to CVS (download sites are listed in [Repository Administration], page 63), this
chapter does not discuss most of them. Their popularity makes it easy to find out more
about them from mailing lists and newsgroups. One exception to this is the Emacs pcl-cvs
interface, which is very useful, but sometimes tricky to install.

pcl-cvs — An Emacs Interface To CVS

Depends on: Emagcs, Elib

URLs:
ftp://rum.cs.yale.edu/pub/monnier/pcl-cvs/
ftp://ftp.lysator.liu.se/pub/emacs/pcl-cvs-1.05.tar.gz
ftp://ftp.red-bean.com/pub/kfogel/pcl-cvs-1.05.tar.gz

Authors: Per Cederqvist and Stefan Monnier (current maintainer)

pcl-cvs is one of two Emacs/CVS interfaces. The other is the native VC (Version
Control) interface built into Emacs. I prefer pcl-cvs because it was written exclusively for
CVS and, therefore, works smoothly with the CVS way of doing things. VC, on the other
hand, was designed to work with several different back-end version control systems — RCS
and SCCS, as well as CVS — and is not really "tuned" for CVS. For example, VC presents
a file-based rather than a directory-based interface to revision control.

The advantages of pcl-cvs are strong enough that many people choose to download and
install it rather than use VC. Unfortunately, pcl-cvs has two disadvantages: It can be a bit
tricky to install (much of this section is devoted to overcoming possible installation hurdles),
and its recent releases are a bit unstable.

The latter problem is likely to be temporary, but it does raise the question of which
version to use. Stefan Monnier has just recently taken over the pcl-cvs maintainership; the
latest release, 2.9.6 (available from the first URL in the preceding list), was a bit bumpy
when I tried it. No doubt the problems will be smoothed out soon, but in the meantime,
you might want to use an older version. Because I've been using Version 1.05 daily for
a long time now and it’s performed quite well, I'm going to document that version here.
Fortunately, the installation procedures don’t change much from version to version. If you
decide to use pcl-cvs, I suggest that you check Monnier’s download site for a version newer
than 2.9.6; if there is one, try it out before regressing all the way to 1.05.

You’ll notice that two URLs are given for Version 1.05. The first is Per Cederqvist’s site,
where he still makes available an old archive of pcl-cvs. However, since I'm not sure how
much longer his archive will stay around, I’'m also making the 1.05 distribution available
from ftp.red-bean.com.

Although the rest of these instructions use examples from a Version 1.05 distribution,
they should apply to later versions as well.

198 Open Source Development With CVS

Installing pcl-cvs

If you don’t normally deal with Emacs installation and site-maintenance issues, the pcl-
cvs installation procedure may seem a bit daunting. A little background on how Emacs
works may help.

Most higher-level Emacs features are written in a language called "Emacs Lisp" (Emacs
itself is essentially an interpreter for this language). People add new features to Emacs by
distributing files of Emacs Lisp code. pcl-cvs is written in this language, and it depends
on a library of useful, generic Emacs Lisp functions called Elib (also written in part by Per
Cederqvist, but distributed separately from pcl-cvs).

Elib is not included in the regular Emacs distribution (at least not FSF Emacs; I don’t
know about XEmacs), so you may have to download and install it yourself before you can use
pcl-cvs. You can get it from ftp://ftp.lysator.liu.se/pub/emacs/elib-1.0.tar.gz.
Installation instructions are contained within the package.

Once Elib is installed, you're ready to build and install pcl-cvs. These instructions
applies both to Version 1.05 and the 2.x series (although you should check the NEWS and
INSTALL files in newer distributions to see what’s changed).

First, unpack pcl-cvs (I'm using Version 1.05, but it could just as easily have been 2.9.6)

floss$ zcat pcl-cvs-1.05.tar.gz | tar xvf -
pcl-cvs-1.05/
pcl-cvs-1.05/README
pcl-cvs-1.05/NEWS
pcl-cvs-1.05/INSTALL
pcl-cvs-1.05/Changelog
pcl-cvs-1.05/pcl-cvs.el
pcl-cvs-1.05/pcl-cvs.texinfo
pcl-cvs-1.05/compile-all.el
pcl-cvs-1.05/pcl-cvs-lucid.el
pcl-cvs-1.05/pcl-cvs-startup.el
pcl-cvs-1.05/pcl-cvs.info
pcl-cvs-1.05/Makefile
pcl-cvs-1.05/texinfo.tex

and go into the source tree’s top level:
floss$ cd pcl-cvs-1.05/
A Makefile is supplied there. According to the instructions in the INSTALL file, you're
supposed to edit a few paths at the top of the Makefile and then run:
floss$ make install
If that works, great. However, this sometimes results in an error (the pcl-cvs code itself
is very portable, but its installation procedures sometimes are not). Do this if you get an
error:
floss$ make clean
floss$ make
If all goes well, these commands accomplish a significant part of the installation by byte-
compiling all of the Emacs Lisp files. (Byte-compiling converts a file of human-readable
Emacs Lisp code — an .el file — into a more compact and efficient representation — an .elc
file. Emacs can load and run an .elc file with better performance than it can a plain .el file.)

Third-Party Tools 199

T'll proceed as though the byte-compilation stage has succeeded. If the byte compilation
does not appear to succeed, don’t worry: The .elc files are a luxury, not a necessity. They
improve performance slightly, but you can run pcl-cvs from the raw .el files with no problem.

If the make install failed, the next step is to get the Emacs Lisp (whether .el or .elc)
into a directory where Emacs can load it automatically. Emacs has a designated directory
on the system for locally installed Lisp. To find this directory — it will have a file named
‘default.el’ in it — check the following locations, in this order:

1. /usr/share/emacs/site-lisp/

2. /usr/local/share/emacs/site-lisp/
3. /usr/lib/emacs/site-lisp/

4. /usr/local/lib/emacs/site-lisp/

Once you’ve found your site-lisp directory, copy all of the Lisp files to it (you may have
to be root to do this):

floss# cp -f *.el *.elc /usr/share/emacs/site-lisp/

The last step is to tell Emacs about the entry points to pcl-cvs (the main one being the
function cvs-update), so it will know to load the pcl-cvs code on demand. Because Emacs
always reads the default.el file when it starts up, that’s where you need to list the pcl-cvs
entry points.

Fortunately, pcl-cvs provides the necessary content for default.el. Simply put the con-
tents of pcl-cvs-startup.el into default.el (or perhaps into your .emacs, if you’re just installing
this for yourself) and restart your Emacs.

You may also want to copy the .info files into your info tree and add pcl-cvs to the table
of contents in the dir file.

Using pcl-cvs

Once installed, pcl-cvs is very easy to use. You just run the function cvs-update, and
pcl-cvs brings up a buffer showing what files in your working copy have been modified or
updated. From there, you can commit, do diffs, and so on.

Because cvs-update is the main entry point, I suggest that you bind it to a convenient
key sequence before going any further. I have it bound to Ctrl+c v in my .emacs:

(global-set-key "\C-cv" ’cvs-update)
Otherwise, you can run it by typing M-x cvs-update (also known as Esc-x cvs-update).

When invoked, cvs-update runs cvs update as if in the directory of the file in the current
buffer — just as if you typed cvs update on the command line in that directory. Here’s an
example of what you might see inside Emacs:

PCL-CVS release 1.05 from CVS release $Name: $.

Copyright (C) 1992, 1993 Per Cederqvist

Pcl-cvs comes with absolutely no warranty; for details consult the manual.
This is free software, and you are welcome to redistribute it under certain
conditions; again, consult the TeXinfo manual for details.

Modified c¢i README.txt

Modified ci fish.c

—————————— End ----

200 Open Source Development With CVS

Two files have been locally modified (some versions of pcl-cvs show the subdirectories
where the files are located). The next logical action is to commit one or both of the files,
which is what the ci on each line means. To commit one of them, go to its line and type c.
You are brought to a log message buffer, where you can type a log message as long as you
want (real log message editing is the major advantage of pcl-cvs over the command line).
Type Ctrl+c Ctrl+c when done to complete the commit.

If you want to commit multiple files at once, sharing a log message, first use m to mark
the files that you intend to commit. An asterisk appears next to each file as you mark it:
PCL-CVS release 1.05 from CVS release $Name: $.
Copyright (C) 1992, 1993 Per Cederqvist
Pcl-cvs comes with absolutely no warranty; for details consult the manual.
This is free software, and you are welcome to redistribute it under certain
conditions; again, consult the TeXinfo manual for details.
* Modified ci README.txt
* Modified ci fish.c
—————————— End ----

Now when you type ¢ anywhere, it applies to all (and only) the marked files. Write the
log message and commit them with Ctrl+c Ctrl+c as before.

You can also type d to run cvs diff on a file (or on marked files) and f to bring a file into
Emacs for editing. Other commands are available; type Ctrl+h m in the update buffer to
see what else you can do.

Error Handling In pcl-cvs

The pcl-cvs program has historically had an odd way of dealing with error and informa-
tional messages from CVS (although this may be corrected in the latest versions). When it
encounters a message from CVS that it doesn’t know about, it gets hysterical and throws
you into a mail buffer, ready to send a pregenerated bug report to the author of pcl-cvs.
Unfortunately, among the CVS messages that pcl-cvs may not know about are the ones
associated with conflicting merges, which, although not common, certainly do occur from
time to time.

If pcl-cvs suddenly dumps you into a mail buffer, don’t panic. Read over the contents of
the buffer carefully — the offending CVS output should be in there somewhere. If it looks
like a merge, you can just get rid of the mail buffer and rerun cvs-update. It should now
succeed, because CVS won’t output any merge messages (because the merge has already
taken place).

(Update: this problem appears to have been fixed in more recent versions of pcl-cvs, so
very probably you can ignore this entire warning.)

The Future Of pcl-cvs

Although I may be giving you the impression that pcl-cvs is barely maintained and a
risky investment, the instability appears to be temporary. Stefan Monnier is a responsive
maintainer (I contacted him several times during the writing of this chapter, and he always
answered right away; he is already making headway on some of the bugs in Version 2.9.6).
Very likely by the time this is published, you will be able to download Version 2.9.7 or later
with confidence.

Third-Party Tools 201

In fact, I just now got an encouraging email on this topic from Greg Woods, a former
maintainer of pcl-cvs, reprinted here with his permission:

From: woods@most.weird.com (Greg A. Woods)

Subject: Re: pcl-cvs maintenance status, stability of recent '"release's?
To: kfogel@red-bean.com

Date: Sun, 29 Aug 1999 18:59:19 -0400 (EDT)

[...]
I’ve been using Stefan’s releases for some time now, and indeed I have
abandoned my own branch of it.

He’s done a lot of really good work on PCL-CVS and except for a few odd
quirks in the 2.9.6 version I’m using daily now it is quite usable (and
is approximately infinitely more usable with modern CVS than the one
that was in the CVS distribution! ;-).

I’ve added a pcl-cvs.README file to my FTP site to point out that the
files there are indeed quite old (at least in Internet time! ;-) and to
give a pointer to Stefan’s FTP site too.

[...]

In a later email, Greg said that the FSF is considering including pcl-cvs in their next re-
lease of Emacs (20.5), which would render most of the preceding installation advice obsolete.
Sigh. It’s hard to keep up with free software, sometimes.

cvsutils — General Utilities For Use With CVS

Depends on: Perl
URLs:

http://www.red-bean.com/cvsutils

Authors: Tom Tromey (original author) and Pavel Roskin (current maintainer)

The suite of small programs called cvsutils generally (although not always) performs
offline operations in the CVS working copy. Offline operations are those that can be done
without contacting the repository, while still leaving the working copy in a consistent state
for the next time the repository is contacted. Offline behavior can be extremely handy
when your network connection to the repository is slow or unreliable.

The cvsutils programs are listed below in approximate order of usefulness (according to
my opinion), with the more useful ones coming first. Coincidentally, this also arranges them
by safety. Safety is an issue because some of these utilities can, in their normal course of
operation, cause you to lose local modifications or files from your working copy. Therefore,
read the descriptions carefully before using these utilities.

This documentation is accurate as of Version 0.1.4. Be sure to read the README file
in any later versions for more up-to-date information.

202 Open Source Development With CVS

cvsu

Danger level: None
Contacts repository: No

This does an offline cvs update by comparing the timestamps of files on disk with their
timestamps recorded in CVS/Entries. You can thus tell which files have been locally modi-
fied and which files are not known to be under CVS control. Unlike cvs update, cvsu does
not bring down changes from the repository.

Although it can take various options, cvsu is most commonly invoked without any op-
tions:

floss$ cvsu

./bar
./chapter-10.html
./chapter-10.sgml
./out

./safe.sh

D ./tools

The left-side codes are like the output of cvs update, except that D means directory. This
example shows that chapter-10.sgml has been modified locally. What the example doesn’t
show is that cvsu ran instantly, whereas a normal cvs update would have required half a
minute or so over my slow modem line. Run

N O =R 9N

floss$ cvsu —-help

to see a list of options.

cvsdo

Danger level: Low to none
Contacts repository: No

This can simulate the working copy effects of cvs add and cvs remove, but without
contacting the repository. Of course, you'd still have to commit the changes to make them
take effect in the repository, but at least the add and remove commands themselves can be
sped up this way. Here’s how to use it

floss$ cvsdo add FILENAME
or
floss$ cvsdo remove FILENAME
To see a list of further options, run:
floss$ cvsdo --help

cvschroot

Danger level: Low
Contacts repository: No

This deals with a repository move by tweaking the working copy to point to the new
repository. This is useful when a repository is copied en masse to a new location. When

Third-Party Tools 203

that happens, none of the revisions are affected, but the CVS/Root (and possibly the
CVS/Repository) file of every working copy must be updated to point to the new location.
Using cvschroot is a lot faster than checking out a new copy. Another advantage is that it
doesn’t lose your local changes.

Usage:
floss$ cvschroot NEW_REPOS
For example:

floss$ cvschroot :pserver:newuser@newhost.wherever.com:/home/cvs/myproj

cvsrmadm

Danger level: Low to medium
Contacts repository: No

This removes all of the CVS/ administrative subdirectories in your working copy, leaving
behind a tree similar to that created by cvs export.

Although you won’t lose any local changes by using cvsrmadm, your working copy will
no longer be a working copy.

Use with caution.

cvspurge

Danger level: Medium
Contacts repository: No

This removes all non-CVS-controlled files in your working copy. It does not undo any
local changes to CVS-controlled files.

Use with caution.

cvsdiscard

Danger level: Medium to high
Contacts repository: Maybe

This is the complement of cvspurge. Instead of removing unknown files but keeping your
local changes, cvsdiscard undoes any local changes (replacing those files with fresh copies
from the repository), but keeps unknown files.

Use with extreme caution.

CvsCco

Danger level: High
Contacts repository: Maybe

This is the union of cvspurge and cvsdiscard. It undoes any local changes and removes
unknown files from the working copy.

Use with truly paranoid caution.

204 Open Source Development With CVS

cvsdate

This script is apparently incomplete and possibly may never be finished. (See the
README file for details.)

cvs2cl — Generate GNU-Style ChangeLogs

Depends on: Perl
URL: http://www.red-bean.com/ "kfogel/cvs2cl.shtml

cvs2cl.pl condenses and reformats the output of cvs log to create a GNU-style ChangeLog
file for your project. ChangeLogs are chronologically organized documents showing the
change history of a project, with a format designed specifically for human-readability (see
the following examples).

The problem with the cvs log command is that it presents its output on a per-file basis,
with no acknowledgement that the same log message, appearing at roughly the same time
in different files, implies that those revisions were all part of a single commit. Thus, reading
over log output to get an overview of project development is a hopeless task — you can really
only see the history of one file at a time.

In the ChangeLog produced by cvs2cl.pl, identical log messages are unified, so that a
single commit involving a group of files shows up as one entry. For example:

floss$ cvs2cl.pl -r

cvs log: Logging .

cvs log: Logging a-subdir

cvs log: Logging a-subdir/subsubdir
cvs log: Logging b-subdir

floss$ cat Changelog

1999-08-29 05:44 jrandom
* README (1.6), hello.c (2.1), a-subdir/whatever.c (2.1),
a-subdir/subsubdir/fish.c (2.1): Committing from pcl-cvs 2.9, just
for kicks.

1999-08-23 22:48 jrandom
* README (1.5): [no log messagel

1999-08-22 19:34 jrandom
* README (1.4): trivial change

floss$

The first entry shows that four files were committed at once, with the log message,

"Committing from pcl-cvs 2.9, just for kicks.". (The -r option was used to show the revision
number of each file associated with that log message.)

Third-Party Tools 205

Like CVS itself, cvs2cl.pl takes the current directory as an implied argument but acts
on individual files if given file name arguments. Following are a few of the most commonly
used options.

h, --help

Show usage (including a complete list of options).

-r, ——revisions

Show revision numbers in output. If used in conjunction with -b, branches are shown
as BRANCHNAMEL.N, where N is the revision on the branch.

-t, -—tags

Show tags (symbolic names) for revisions that have them.

-b, ——branches

Show the branch name for revisions on that branch. (See also -r.)

-g OPTS, ——global-opts OPTS

Pass OPTS as global arguments to cvs. Internally, cvs2cl.pl invokes cvs to get the raw
log data; thus, OPTS are passed right after the cvs in that invocation. For example,
to achieve quiet behavior and compression, you can do this:

floss$ cvs2cl.pl -g "-Q -z3"

-1 OPTS, ——-1log-opts OPTS

Similar to -g, except that OPTS are passed as command options instead of global
options. To generate a ChangeLog showing only commits that happened between July
26 and August 15, you can do this:

floss$ cvs2cl.pl -1 "?-d1999-07-26<1999-08-15""

Notice the double-layered quoting — this is necessary in Unix because the shell that in-
vokes cvs log (inside cvs2cl.pl) interprets the < as a shell redirection symbol. Therefore,
the quotes have to be passed as part of the argument, making it necessary to surround
the whole thing with an additional set of quotes.

-d, --distributed

Put an individual ChangeLog in each subdirectory, covering only commits in that
subdirectory (as opposed to building one ChangeLog that covers the directory where
cvs2cl.pl was invoked and all subdirectories underneath it).

cvsq — Queue CVS Commands For Later Connection

Depends on: Bash

206 Open Source Development With CVS

URL: http://www.volny.cz/v.slavik/1t/cvsq.html
Vaclav Slavik <v.slavik@volny.cz>, the author of cvsq, has this to say about it:

cvsq stands for "cvs queued" and it is a small bash script that wraps around Cyclic’s
CVS. It makes working with CVS repository a bit easier for people connected via dial-up,
because it can queue CVS commands and pass them to "real cvs" later.

For example, you can commit files immediately after editing them, when being offline,
so you don’t forget about them:

cvsq commit -m "change 1" filel.c
cvsq commit -m "change 2" file2.c
cvsq commit -m "change 3" file3.c

And then, when you go online, you simply type
cvsq upload

and all changes will be commited into the repository. If uploading of a particular file
fails, it won’t be lost — instead, you’ll see error message and the file will stay in cvsq queue.

You can use cvsq even for commands that make no sense when offline — in that case,
the command is immediately passed to cvs and not queued. For example, you can call cvsq
update and it won’t be put into the queue but executed immediately. In fact, you can start
using cvsq as a replacement for cvs.

cvsq is in public domain.

cvslock — Lock Repositories For Atomicity

Depends on: C compiler for installation; nothing for runtime

URL: ftp://riemann.iam.uni-bonn.de/pub/users/roessler/cvslock/

This program locks a CVS repository (either for reading or writing) in the same way
that CVS does, so that CVS will honor the locks. This can be useful when, for example, you

need to make a copy of the whole repository and want to avoid catching parts of commits
or other people’s lockfiles.

The cvslock distribution is packaged extremely well and can be installed according to
the usual GNU procedures. Here’s a transcript of an install session:

floss$ zcat cvslock-0.1.tar.gz | tar xvf -

cvslock-0

cvslock-0

.1/
cvslock-0.
cvslock-0.
cvslock-0.
cvslock-0.
cvslock-0.
cvslock-0.
cvslock-0.
.1/configure
cvslock-0.
cvslock-0.
cvslock-0.
cvslock-0.
cvslock-0.

1/Makefile.in
1/README
1/COPYING
1/Makefile.am
1/acconfig.h
1/aclocal.mé
1/config.h.in

1/configure.in
1/install-sh
1/missing
1/mkinstalldirs
1/stamp-h.in

Third-Party Tools 207

cvslock-0.1/cvslock.c
cvslock-0.1/cvslock.1
cvslock-0.1/snprintf.c
cvslock-0.1/cvslssh
cvslock-0.1/VERSION

floss$ cd cvslock-0.1

floss$./configure

floss$ make

gcc -DHAVE_CONFIG_H -I. -I. -I. -g -02 -c cvslock.c
gcc -g -02 -o cvslock cvslock.o
floss$ make install

floss$
(Note that you may have to do the make install step as root).
Now, cvslock is installed as /usr/local/bin/cvslock. When you invoke it, you can specify
the repository with -d or via the $§CVSROOT environment variable, just as with CVS itself
(the following examples use -d). Its only required argument is the name of the directory to

lock, relative to the top of the repository. That directory and all of its subdirectories will
be locked. In this example, there are no subdirectories, so only one lockfile is created:

floss$ 1s /usr/local/newrepos/myproj/b-subdir/

random.c,Vv

floss$ cvslock -d /usr/local/newrepos myproj/b-subdir

floss$ 1s /usr/local/newrepos/myproj/b-subdir/
#icvs.rfl.cvslock.floss.27378 random.c,v

floss$ cvslock -u -p 27378 -d /usr/local/newrepos myproj/b-subdir
floss$ 1s /usr/local/newrepos/myproj/b-subdir/

random.c,v

floss$

Notice that when I cleared the lock (-u for unlock), I had to specify -p 27378. That’s
because cvslock uses Unix process IDs when creating lockfile names to ensure that its locks
are unique. When you unlock, you have to tell cvslock which lock instance to remove, even
if there’s only one instance present. Thus, the -p flag tells cvslock which previous instance
of itself it’s cleaning up after (you can use -p with or without -u, though).

If you're going to be working in the repository for a while, doing various operations
directly in the file system, you can use the -s option to have cvslock start up a new shell for
you. It then consults the $SHELL environment variable in your current shell to determine
which shell to use:

floss$ cvslock -s -d /usr/local/newrepos myproj

The locks remain present until you exit the shell, at which time they are automatically
removed. You can also use the -c option to execute a command while the repository is
locked. Just as with -s, the locks are put in place before the command starts and removed
when it’s finished. In the following example, we lock the repository just long enough to
display a listing of all of the lockfiles:

floss$ cvslock -c ’find . -name "*cvslock*" ’ -d /usr/local/newrepos myproj
cvslock: ’/usr/local/newrepos/myproj’ locked successfully.

208 Open Source Development With CVS

cvslock: Starting ’find . -name "*cvslock*" -print’...
./a-subdir/subsubdir/#cvs.rfl.cvslock.floss.27452
./a-subdir/#cvs.rfl.cvslock.floss.27452
./b-subdir/#cvs.rfl.cvslock.floss.27452
./#cvs.rfl.cvslock.floss.27452

floss$ find /usr/local/newrepos/myproj —name "*cvslock*" -print
floss$

The command (the argument to the -c option) is run with the specified repository di-
rectory as its working directory.

By default, cvslock creates read-locks. You can tell it to use write-locks instead by
passing the -W option. (You can pass -R to specify read-locks, but that’s the default
anyway.) Always remove any locks when you’re finished, so that other users’ CVS processes
don’t wait needlessly.

Note that cvslock must be run on the machine where the repository resides — you cannot
specify a remote repository. (For more information, run man cvslock, which is a manual
page installed when you ran make install.)

Other Packages

Many other third-party packages are available for CVS. Following are pointers to some
of these.

CVSUp (Part Of The FreeBSD Project)

CVSUp is an efficient generic mirroring tool with special built-in support for mirroring
CVS repositories. The FreeBSD operating system uses it to distribute changes from their
master repository, so users can keep up to date conveniently.

For more information on CVSUp in general, check out http://www.polstra.com/projects/freeware/CVS

For its use in FreeBSD in particular, see http://www.freebsd.org/handbook/synching.html#CVSUP.

CVSWeb: A Web Interface To CVS Repositories

CVSWeb provides a Web interface to browsing CVS repositories. A more accurate
name might be "RCSWeb", because what it actually does is allow you to browse revisions
directly in a repository, viewing log messages and diffs. Although I’ve never found it to be
a particularly compelling interface myself, I have to admit that it is intuitive enough and a
lot of sites use it.

Although the software was originally written by Bill Fenner, the version most actively un-
der development right now seems to be Henner Zeller’s, at http://linux.fh-heilbronn.de/"zeller/cgi/cvs

You may also want to visit Fenner’s original site at http://www.freebsd.org/ fenner/cvsweb/
and possibly Cyclic Software’s summary of the CVSWeb scene at http://www.cyclic.com/cyclic-pages/web

Finally, if you'd like to see CVSWeb in action, a good example can be browsed at
http://sourceware.cygnus.com/cgi-bin/cvsweb.cgi/.

Third-Party Tools 209

The CVS contrib/ Directory

As mentioned in [Repository Administration], page 63, a number of third-party tools
are shipped with CVS and are collected in the contrib/ directory. Although I’'m not aware
of any formal rule for determining which tools are distributed with CVS, an effort may be
in process to gather most of the widely used third-party tools and put them in contrib/ so
people know where to find them. Until that happens, the best way to find such tools is to
look in contrib/, look at various CVS Web sites, and ask on the mailing list.

Writing Your Own Tools

CVS can at times seem like a bewildering collection of improvised standards. There’s
RCS format, various output formats (history, annotate, log, update, and so on), sev-
eral repository administrative file formats, working copy administrative file formats, the
client /server protocol, the lockfile protocol.... (Are you numb yet? I could keep going, you
know.)

Fortunately, these standards remain fairly consistent from release to release — so if you're
trying to write a tool to work with CVS, you at least don’t have to worry about hit-
ting a moving target. For every internal standard, there are usually a few people on the
info-cvs@gnu.org mailing list who know it extremely well (several of them helped me out
during the writing of this book). There is also the documentation that comes with the CVS
distribution (especially doc/cvs.texinfo, doc/cvsclient.texi, and doc/RCSFILES). Finally,
there is the CVS source code itself, the last word on any question of implementation or
behavior.

With all of this at your disposal, there’s no reason to hesitate. If you can think of some
utility that would make your life with CVS easier, go ahead and write it — chances are
other people have been wanting it, too. Unlike a change to CVS itself, a small, standalone
external utility can get wide distribution very quickly, resulting in quicker feedback for its
author and faster bug fixes for all of the users.

210 Open Source Development With CVS

Index 211

Index

Sorry, the index is still in progress.

Since the online format is searchable anyway, I decided the incompleteness of the index
need not delay the release of the chapters. I hope to have the index finished reasonably soon.
Volunteer indexers are certainly welcome, too — please email bug-cvsbook@red-bean. com
if you're interested.

212 Open Source Development With CVS

Appendix A: GNU General Public License 213

Appendix A GNU General Public License

GNU General Public License
Version 2, June 1991

Copyright (C) 1989, 1991 Free Software Foundation, Inc.
59 Temple Place - Suite 330, Boston, MA 02111-1307, USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

Preamble

The licenses for most software are designed to take away your freedom to
share and change it. By contrast, the GNU General Public License is intended
to guarantee your freedom to share and change free software--to make sure
the software is free for all its users. This General Public License applies
to most of the Free Software Foundation’s software and to any other program
whose authors commit to using it. (Some other Free Software Foundation
software is covered by the GNU Library General Public License instead.) You
can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our
General Public Licenses are designed to make sure that you have the freedom
to distribute copies of free software (and charge for this service if you
wish), that you receive source code or can get it if you want it, that you
can change the software or use pieces of it in new free programs; and that
you know you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to
deny you these rights or to ask you to surrender the rights. These
restrictions translate to certain responsibilities for you if you distribute
copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether gratis or
for a fee, you must give the recipients all the rights that you have. You
must make sure that they, too, receive or can get the source code. And you
must show them these terms so they know their rights.

We protect your rights with two steps: (1) copyright the software, and (2)
offer you this license which gives you legal permission to copy, distribute
and/or modify the software.

Also, for each author’s protection and ours, we want to make certain that
everyone understands that there is no warranty for this free software. If
the software is modified by someone else and passed on, we want its
recipients to know that what they have is not the original, so that any
problems introduced by others will not reflect on the original authors’

214

Open Source Development With CVS

reputations.

Finally, any free program is threatened constantly by software patents. We
wish to avoid the danger that redistributors of a free program will
individually obtain patent licenses, in effect making the program
proprietary. To prevent this, we have made it clear that any patent must be
licensed for everyone’s free use or not licensed at all.

The precise terms and conditions for copying, distribution and modification
follow.

TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

0. This License applies to any program or other work which contains a notice
placed by the copyright holder saying it may be distributed under the terms
of this General Public License. The "Program", below, refers to any such
program or work, and a "work based on the Program" means either the Program
or any derivative work under copyright law: that is to say, a work
containing the Program or a portion of it, either verbatim or with
modifications and/or translated into another language. (Hereinafter,
translation is included without limitation in the term "modification".) Each
licensee is addressed as "you'".

Activities other than copying, distribution and modification are not covered
by this License; they are outside its scope. The act of running the Program
is not restricted, and the output from the Program is covered only if its
contents constitute a work based on the Program (independent of having been
made by running the Program). Whether that is true depends on what the
Program does.

1. You may copy and distribute verbatim copies of the Program’s source code
as you receive it, in any medium, provided that you conspicuously and
appropriately publish on each copy an appropriate copyright notice and
disclaimer of warranty; keep intact all the notices that refer to this
License and to the absence of any warranty; and give any other recipients of
the Program a copy of this License along with the Program.

You may charge a fee for the physical act of transferring a copy, and you
may at your option offer warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion of it,
thus forming a work based on the Program, and copy and distribute such
modifications or work under the terms of Section 1 above, provided that you
also meet all of these conditions:

* a) You must cause the modified files to carry prominent notices stating
that you changed the files and the date of any change.

* b) You must cause any work that you distribute or publish, that in

Appendix A: GNU General Public License 215

whole or in part contains or is derived from the Program or any part
thereof, to be licensed as a whole at no charge to all third parties
under the terms of this License.

* c¢) If the modified program normally reads commands interactively when
run, you must cause it, when started running for such interactive use
in the most ordinary way, to print or display an announcement including
an appropriate copyright notice and a notice that there is no warranty
(or else, saying that you provide a warranty) and that users may
redistribute the program under these conditions, and telling the user
how to view a copy of this License. (Exception: if the Program itself
is interactive but does not normally print such an announcement, your
work based on the Program is not required to print an announcement.)

These requirements apply to the modified work as a whole. If identifiable
sections of that work are not derived from the Program, and can be
reasonably considered independent and separate works in themselves, then
this License, and its terms, do not apply to those sections when you
distribute them as separate works. But when you distribute the same sections
as part of a whole which is a work based on the Program, the distribution of
the whole must be on the terms of this License, whose permissions for other
licensees extend to the entire whole, and thus to each and every part
regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your
rights to work written entirely by you; rather, the intent is to exercise
the right to control the distribution of derivative or collective works
based on the Program.

In addition, mere aggregation of another work not based on the Program with
the Program (or with a work based on the Program) on a volume of a storage
or distribution medium does not bring the other work under the scope of this
License.

3. You may copy and distribute the Program (or a work based on it, under
Section 2) in object code or executable form under the terms of Sections 1
and 2 above provided that you also do one of the following:

* a) Accompany it with the complete corresponding machine-readable source
code, which must be distributed under the terms of Sections 1 and 2
above on a medium customarily used for software interchange; or,

* b) Accompany it with a written offer, valid for at least three years,
to give any third party, for a charge no more than your cost of
physically performing source distribution, a complete machine-readable
copy of the corresponding source code, to be distributed under the
terms of Sections 1 and 2 above on a medium customarily used for
software interchange; or,

216

Open Source Development With CVS

* ¢) Accompany it with the information you received as to the offer to
distribute corresponding source code. (This alternative is allowed only
for noncommercial distribution and only if you received the program in
object code or executable form with such an offer, in accord with
Subsection b above.)

The source code for a work means the preferred form of the work for making
modifications to it. For an executable work, complete source code means all
the source code for all modules it contains, plus any associated interface
definition files, plus the scripts used to control compilation and
installation of the executable. However, as a special exception, the source
code distributed need not include anything that is normally distributed (in
either source or binary form) with the major components (compiler, kernel,
and so on) of the operating system on which the executable runs, unless that
component itself accompanies the executable.

If distribution of executable or object code is made by offering access to
copy from a designated place, then offering equivalent access to copy the

source code from the same place counts as distribution of the source code,
even though third parties are not compelled to copy the source along with

the object code.

4. You may not copy, modify, sublicense, or distribute the Program except as
expressly provided under this License. Any attempt otherwise to copy,
modify, sublicense or distribute the Program is void, and will automatically
terminate your rights under this License. However, parties who have received
copies, or rights, from you under this License will not have their licenses
terminated so long as such parties remain in full compliance.

5. You are not required to accept this License, since you have not signed
it. However, nothing else grants you permission to modify or distribute the
Program or its derivative works. These actions are prohibited by law if you
do not accept this License. Therefore, by modifying or distributing the
Program (or any work based on the Program), you indicate your acceptance of
this License to do so, and all its terms and conditions for copying,
distributing or modifying the Program or works based on it.

6. Each time you redistribute the Program (or any work based on the
Program), the recipient automatically receives a license from the original
licensor to copy, distribute or modify the Program subject to these terms
and conditions. You may not impose any further restrictions on the
recipients’ exercise of the rights granted herein. You are not responsible
for enforcing compliance by third parties to this License.

7. If, as a consequence of a court judgment or allegation of patent
infringement or for any other reason (not limited to patent issues),
conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot distribute so

Appendix A: GNU General Public License 217

as to satisfy simultaneously your obligations under this License and any
other pertinent obligations, then as a consequence you may not distribute
the Program at all. For example, if a patent license would not permit
royalty-free redistribution of the Program by all those who receive copies
directly or indirectly through you, then the only way you could satisfy both
it and this License would be to refrain entirely from distribution of the
Program.

If any portion of this section is held invalid or unenforceable under any
particular circumstance, the balance of the section is intended to apply and
the section as a whole is intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents
or other property right claims or to contest validity of any such claims;
this section has the sole purpose of protecting the integrity of the free
software distribution system, which is implemented by public license
practices. Many people have made generous contributions to the wide range of
software distributed through that system in reliance on consistent
application of that system; it is up to the author/donor to decide if he or
she is willing to distribute software through any other system and a
licensee cannot impose that choice.

This section is intended to make thoroughly clear what is believed to be a
consequence of the rest of this License.

8. If the distribution and/or use of the Program is restricted in certain
countries either by patents or by copyrighted interfaces, the original
copyright holder who places the Program under this License may add an
explicit geographical distribution limitation excluding those countries, so
that distribution is permitted only in or among countries not thus excluded.
In such case, this License incorporates the limitation as if written in the
body of this License.

9. The Free Software Foundation may publish revised and/or new versions of
the General Public License from time to time. Such new versions will be
similar in spirit to the present version, but may differ in detail to
address new problems or concerns.

Each version is given a distinguishing version number. If the Program
specifies a version number of this License which applies to it and "any
later version", you have the option of following the terms and conditions
either of that version or of any later version published by the Free
Software Foundation. If the Program does not specify a version number of
this License, you may choose any version ever published by the Free Software
Foundation.

10. If you wish to incorporate parts of the Program into other free programs
whose distribution conditions are different, write to the author to ask for
permission. For software which is copyrighted by the Free Software

218

Open Source Development With CVS

Foundation, write to the Free Software Foundation; we sometimes make
exceptions for this. Our decision will be guided by the two goals of
preserving the free status of all derivatives of our free software and of
promoting the sharing and reuse of software generally.

NO WARRANTY

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY FOR
THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN
OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES
PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO
THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM
PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR
CORRECTION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR
REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES,
INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING
OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO
LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR
THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER
PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS
How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest possible
use to the public, the best way to achieve this is to make it free software
which everyone can redistribute and change under these terms.

To do so, attach the following notices to the program. It is safest to
attach them to the start of each source file to most effectively convey the
exclusion of warranty; and each file should have at least the "copyright"
line and a pointer to where the full notice is found.

one line to give the program’s name and an idea of what it does.
Copyright (C) yyyy name of author

This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License

as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful,

Appendix A: GNU General Public License 219

but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.

Also add information on how to contact you by electronic and paper mail.

If the program is interactive, make it output a short notice like this when
it starts in an interactive mode:

Gnomovision version 69, Copyright (C) yyyy name of author
Gnomovision comes with ABSOLUTELY NO WARRANTY; for details
type ‘show w’. This is free software, and you are welcome
to redistribute it under certain conditions; type ‘show c’
for details.

The hypothetical commands ‘show w’ and ‘show ¢’ should show the appropriate
parts of the General Public License. 0f course, the commands you use may be
called something other than ‘show w’ and ‘show c’; they could even be
mouse-clicks or menu items--whatever suits your program.

You should also get your employer (if you work as a programmer) or your
school, if any, to sign a "copyright disclaimer" for the program, if
necessary. Here is a sample; alter the names:

Yoyodyne, Inc., hereby disclaims all copyright
interest in the program ‘Gnomovision’

(which makes passes at compilers) written

by James Hacker.

signature of Ty Coon, 1 April 1989
Ty Coon, President of Vice

This General Public License does not permit incorporating your program into
proprietary programs. If your program is a subroutine library, you may
consider it more useful to permit linking proprietary applications with the
library. If this is what you want to do, use the GNU Library General Public
License instead of this License.

220 Open Source Development With CVS

Appendix B: GNU Free Documentation License 221

Appendix B GNU Free Documentation License

GNU Free Documentation License
Version 1.1, March 2000

Copyright (C) 2000 Free Software Foundation, Inc.

59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other written
document "free" in the sense of freedom: to assure everyone the effective
freedom to copy and redistribute it, with or without modifying it, either
commercially or noncommercially. Secondarily, this License preserves for the
author and publisher a way to get credit for their work, while not being
considered responsible for modifications made by others.

This License is a kind of "copyleft", which means that derivative works of
the document must themselves be free in the same sense. It complements the
GNU General Public License, which is a copyleft license designed for free
software.

We have designed this License in order to use it for manuals for free
software, because free software needs free documentation: a free program
should come with manuals providing the same freedoms that the software does.
But this License is not limited to software manuals; it can be used for any
textual work, regardless of subject matter or whether it is published as a
printed book. We recommend this License principally for works whose purpose
is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work that contains a notice
placed by the copyright holder saying it can be distributed under the terms
of this License. The "Document", below, refers to any such manual or work.
Any member of the public is a licensee, and is addressed as '"you".

A "Modified Version" of the Document means any work containing the Document
or a portion of it, either copied verbatim, or with modifications and/or
translated into another language.

A "Secondary Section" is a named appendix or a front-matter section of the
Document that deals exclusively with the relationship of the publishers or
authors of the Document to the Document’s overall subject (or to related
matters) and contains nothing that could fall directly within that overall
subject. (For example, if the Document is in part a textbook of mathematics,

222

Open Source Development With CVS

a Secondary Section may not explain any mathematics.) The relationship could
be a matter of historical comnection with the subject or with related
matters, or of legal, commercial, philosophical, ethical or political
position regarding them.

The "Invariant Sections" are certain Secondary Sections whose titles are
designated, as being those of Invariant Sections, in the notice that says
that the Document is released under this License.

The "Cover Texts" are certain short passages of text that are listed, as
Front-Cover Texts or Back-Cover Texts, in the notice that says that the
Document is released under this License.

A "Transparent" copy of the Document means a machine-readable copy,
represented in a format whose specification is available to the general
public, whose contents can be viewed and edited directly and
straightforwardly with generic text editors or (for images composed of
pixels) generic paint programs or (for drawings) some widely available
drawing editor, and that is suitable for input to text formatters or for
automatic translation to a variety of formats suitable for input to text
formatters. A copy made in an otherwise Transparent file format whose markup
has been designed to thwart or discourage subsequent modification by readers
is not Transparent. A copy that is not "Transparent" is called "Opaque".

Examples of suitable formats for Transparent copies include plain ASCII
without markup, Texinfo input format, LaTeX input format, SGML or XML using
a publicly available DTD, and standard-conforming simple HTML designed for
human modification. Opaque formats include PostScript, PDF, proprietary
formats that can be read and edited only by proprietary word processors,
SGML or XML for which the DTD and/or processing tools are not generally
available, and the machine-generated HTML produced by some word processors
for output purposes only.

The "Title Page" means, for a printed book, the title page itself, plus such
following pages as are needed to hold, legibly, the material this License
requires to appear in the title page. For works in formats which do not have
any title page as such, "Title Page" means the text near the most prominent
appearance of the work’s title, preceding the beginning of the body of the
text.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially
or noncommercially, provided that this License, the copyright notices, and
the license notice saying this License applies to the Document are
reproduced in all copies, and that you add no other conditions whatsoever to
those of this License. You may not use technical measures to obstruct or
control the reading or further copying of the copies you make or distribute.
However, you may accept compensation in exchange for copies. If you

Appendix B: GNU Free Documentation License 223

distribute a large enough number of copies you must also follow the
conditions in section 3.

You may also lend copies, under the same conditions stated above, and you
may publicly display copies.

3. COPYING IN QUANTITY

If you publish printed copies of the Document numbering more than 100, and
the Document’s license notice requires Cover Texts, you must enclose the
copies in covers that carry, clearly and legibly, all these Cover Texts:
Front-Cover Texts on the front cover, and Back-Cover Texts on the back
cover. Both covers must also clearly and legibly identify you as the
publisher of these copies. The front cover must present the full title with
all words of the title equally prominent and visible. You may add other
material on the covers in addition. Copying with changes limited to the
covers, as long as they preserve the title of the Document and satisfy these
conditions, can be treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly,
you should put the first ones listed (as many as fit reasonably) on the
actual cover, and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more
than 100, you must either include a machine-readable Transparent copy along
with each Opaque copy, or state in or with each Opaque copy a
publicly-accessible computer-network location containing a complete
Transparent copy of the Document, free of added material, which the general
network-using public has access to download anonymously at no charge using
public-standard network protocols. If you use the latter option, you must
take reasonably prudent steps, when you begin distribution of Opaque copies
in quantity, to ensure that this Transparent copy will remain thus
accessible at the stated location until at least one year after the last
time you distribute an Opaque copy (directly or through your agents or
retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the
Document well before redistributing any large number of copies, to give them
a chance to provide you with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the
conditions of sections 2 and 3 above, provided that you release the Modified
Version under precisely this License, with the Modified Version filling the
role of the Document, thus licensing distribution and modification of the
Modified Version to whoever possesses a copy of it. In addition, you must do
these things in the Modified Version:

224

Open Source Development With CVS

A. Use in the Title Page (and on the covers, if any) a title distinct
from that of the Document, and from those of previous versions (which
should, if there were any, be listed in the History section of the
Document). You may use the same title as a previous version if the
original publisher of that version gives permission.

B. List on the Title Page, as authors, one or more persons or entities
responsible for authorship of the modifications in the Modified
Version, together with at least five of the principal authors of the
Document (all of its principal authors, if it has less than five).

C. State on the Title page the name of the publisher of the Modified
Version, as the publisher.

D. Preserve all the copyright notices of the Document.

* E. Add an appropriate copyright notice for your modifications adjacent

to the other copyright notices.

F. Include, immediately after the copyright notices, a license notice
giving the public permission to use the Modified Version under the
terms of this License, in the form shown in the Addendum below.

G. Preserve in that license notice the full lists of Invariant Sections
and required Cover Texts given in the Document’s license notice.

H. Include an unaltered copy of this License.

I. Preserve the section entitled "History", and its title, and add to
it an item stating at least the title, year, new authors, and publisher
of the Modified Version as given on the Title Page. If there is no
section entitled "History" in the Document, create one stating the
title, year, authors, and publisher of the Document as given on its
Title Page, then add an item describing the Modified Version as stated
in the previous sentence.

J. Preserve the network location, if any, given in the Document for
public access to a Transparent copy of the Document, and likewise the
network locations given in the Document for previous versions it was
based on. These may be placed in the "History" section. You may omit a
network location for a work that was published at least four years
before the Document itself, or if the original publisher of the version
it refers to gives permission.

K. In any section entitled "Acknowledgements" or "Dedications",
preserve the section’s title, and preserve in the section all the
substance and tone of each of the contributor acknowledgements and/or
dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in
their text and in their titles. Section numbers or the equivalent are
not considered part of the section titles.

M. Delete any section entitled "Endorsements". Such a section may not
be included in the Modified Version.

N. Do not retitle any existing section as "Endorsements" or to conflict
in title with any Invariant Section.

If the Modified Version includes new front-matter sections or appendices
that qualify as Secondary Sections and contain no material copied from the
Document, you may at your option designate some or all of these sections as

Appendix B: GNU Free Documentation License 225

invariant. To do this, add their titles to the list of Invariant Sections in
the Modified Version’s license notice. These titles must be distinct from
any other section titles.

You may add a section entitled "Endorsements", provided it contains nothing
but endorsements of your Modified Version by various parties--for example,
statements of peer review or that the text has been approved by an
organization as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a
passage of up to 25 words as a Back-Cover Text, to the end of the list of
Cover Texts in the Modified Version. Only one passage of Front-Cover Text
and one of Back-Cover Text may be added by (or through arrangements made by)
any one entity. If the Document already includes a cover text for the same
cover, previously added by you or by arrangement made by the same entity you
are acting on behalf of, you may not add another; but you may replace the
old one, on explicit permission from the previous publisher that added the
old one.

The author(s) and publisher(s) of the Document do not by this License give
permission to use their names for publicity for or to assert or imply
endorsement of any Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this
License, under the terms defined in section 4 above for modified versiomns,
provided that you include in the combination all of the Invariant Sections
of all of the original documents, unmodified, and list them all as Invariant
Sections of your combined work in its license notice.

The combined work need only contain one copy of this License, and multiple
identical Invariant Sections may be replaced with a single copy. If there
are multiple Invariant Sections with the same name but different contents,
make the title of each such section unique by adding at the end of it, in
parentheses, the name of the original author or publisher of that section if
known, or else a unique number. Make the same adjustment to the section
titles in the list of Invariant Sections in the license notice of the
combined work.

In the combination, you must combine any sections entitled "History" in the
various original documents, forming one section entitled "History"; likewise
combine any sections entitled "Acknowledgements", and any sections entitled
"Dedications". You must delete all sections entitled "Endorsements."

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents
released under this License, and replace the individual copies of this

226

Open Source Development With CVS

License in the various documents with a single copy that is included in the
collection, provided that you follow the rules of this License for verbatim
copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute it
individually under this License, provided you insert a copy of this License
into the extracted document, and follow this License in all other respects
regarding verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and
independent documents or works, in or on a volume of a storage or
distribution medium, does not as a whole count as a Modified Version of the
Document, provided no compilation copyright is claimed for the compilation.
Such a compilation is called an "aggregate", and this License does not apply
to the other self-contained works thus compiled with the Document, on
account of their being thus compiled, if they are not themselves derivative
works of the Document. If the Cover Text requirement of section 3 is
applicable to these copies of the Document, then if the Document is less
than one quarter of the entire aggregate, the Document’s Cover Texts may be
placed on covers that surround only the Document within the aggregate.
Otherwise they must appear on covers around the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute
translations of the Document under the terms of section 4. Replacing
Invariant Sections with translations requires special permission from their
copyright holders, but you may include translations of some or all Invariant
Sections in addition to the original versions of these Invariant Sections.
You may include a translation of this License provided that you also include
the original English version of this License. In case of a disagreement
between the translation and the original English version of this License,
the original English version will prevail.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as
expressly provided for under this License. Any other attempt to copy,
modify, sublicense or distribute the Document is void, and will
automatically terminate your rights under this License. However, parties who
have received copies, or rights, from you under this License will not have
their licenses terminated so long as such parties remain in full compliance.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU
Free Documentation License from time to time. Such new versions will be

Appendix B: GNU Free Documentation License 227

similar in spirit to the present version, but may differ in detail to
address new problems or concerns. See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the
Document specifies that a particular numbered version of this License "or

any later version" applies to it, you have the option of following the terms
and conditions either of that specified version or of any later version that
has been published (not as a draft) by the Free Software Foundation. If the
Document does not specify a version number of this License, you may choose

any version ever published (not as a draft) by the Free Software Foundation.

How to use this License for your documents

To use this License in a document you have written, include a copy of the
License in the document and put the following copyright and license notices
just after the title page:

Copyright (c) YEAR YOUR NAME.

Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.1

or any later version published by the Free Software Foundation;

with the Invariant Sections being LIST THEIR TITLES, with the
Front-Cover Texts being LIST, and with the Back-Cover Texts being LIST.
A copy of the license is included in the section entitled "GNU

Free Documentation License".

If you have no Invariant Sections, write "with no Invariant Sections"
instead of saying which ones are invariant. If you have no Front-Cover
Texts, write "no Front-Cover Texts" instead of "Front-Cover Texts being
LIST"; likewise for Back-Cover Texts.

If your document contains nontrivial examples of program code, we recommend
releasing these examples in parallel under your choice of free software
license, such as the GNU General Public License, to permit their use in free
software.

228 Open Source Development With CVS

